Behavioural brain research
-
DBS of the medial forebrain bundle (MFB) has been investigated clinically in major depressive disorder patients with rapid and long-term reduction of symptoms. In the context of chronic bilateral high frequency deep brain stimulation (DBS) of the MFB, the current study looked at the impact of lesioning the ascending dopaminergic pathway at the level of the ventral tegmental area (VTA). Sprague-Dawley female rats were given bilateral injection of 6-OHDA into the VTA (VTA-lx group) or were left unlesioned (control group). ⋯ Our results confirm a potential role for dopamine in symptom relief observed in clinical MFB-DBS. Although mechanisms are not fully understood, the data suggests that the rescue of depressive phenotype in rodents can work via both dopamine-dependent and independent mechanisms. Further investigations concerning the network of depression using neuromodulation platforms in animal models might give insight into genesis and treatment of major depression disorder.
-
Task specific motor training is a common form of rehabilitation therapy in individuals with spinal cord injury (SCI). The single pellet grasping (SPG) task is a skilled forelimb motor task used to evaluate recovery of forelimb function in rodent models of SCI. The task requires animals to obtain food pellets located on a shelf beyond a slit at the front of an enclosure. ⋯ Here we show that rats with cervical SCI can successfully perform the SPG task using the APP system. We found that SCI rats with APP training performed significantly more attempts, had slightly lower and less variable final score success rates, and larger therapeutic windows than SCI rats with manual training. These results demonstrate that APP training has clear advantages over manual training for evaluating reaching performance of SCI rats and represents a new tool for investigating rehabilitative motor training following CNS injury.
-
Emotional and cognitive dysregulation in major depressive disorder (MDD) have been consistently considered to be attributed to structural and functional abnormalities in affective network (AN) and cognitive control network (CCN). This study was to investigate the functional connectivity (FC) patterns and altered functional interactions between both networks in MDD. We investigated resting-state functional connectivity magnetic resonance imaging in the AN and the CCN in 25 MDD and 35 healthy controls (HC). ⋯ Interestingly, the altered FC between right ACC and left AMG was negatively correlated with depressive symptom score while the altered FC between right ACC and DLPFC was positively correlated the executive function in MDD. The right ACC not only supports the cognitive and emotional processes, but also is an altered functional interaction hub between AN and CCN in MDD. It further suggest multiple sources of dysregulation in AN and CCN implicate both top-down cognitive control and bottom-up emotional expression dysfunction in MDD.
-
Tetrabenazine (TBZ) is prescribed for the treatment of chorea associated with Huntington's disease. Via inhibition of the vesicular monoamine transporter (VMAT-2), TBZ blocks dopamine (DA) storage and depletes striatal DA; this drug also has been shown to induce Parkinsonian motor side effects in patients. Recently, TBZ was shown to induce tremulous jaw movements (TJMs) in rats and mice. ⋯ Consistent with the behavioral data, TBZ alone produced a biphasic effect on extracellular DA, with an initial increases followed by a prolonged decrease during the period in which TJMs are displayed. Co-administration of deprenyl with TBZ increased DA levels compared to rats treated with TBZ alone. These results provide support for use of TBZ as a rodent model of Parkinsonism, and future studies should utilize this model to evaluate putative anti-Parkinsonian agents.
-
Opioids produce antinociception by activation of G protein signaling linked to the mu-opioid receptor (MOPr). However, opioid binding to the MOPr also activates β-arrestin signaling. Opioids such as DAMGO and fentanyl differ in their relative efficacy for activation of these signaling cascades, but the behavioral consequences of this differential signaling are not known. ⋯ Microinjection of DAMGO, but not fentanyl, into the vlPAG induced phosphorylation of ERK1/2, which was blocked by inhibiting receptor internalization with administration of dyn-DN, but not by inhibition of Gαi/o proteins. ERK1/2 inhibition also prevented the development and expression of tolerance to repeated DAMGO microinjections, but had no effect on fentanyl tolerance. These data reveal that ERK1/2 activation following MOPr internalization contributes to the antinociceptive effect of some (e.g., DAMGO), but not all opioids (e.g., fentanyl) despite the known similarities for these agonists to induce β-arrestin recruitment and internalization.