Placenta
-
Flow phantoms have been used to investigate and quantify three-dimensional power Doppler data but this is the first study to use the in vitro, dual perfused, placental perfusion model. We used this model to investigate and quantify the effect of variation in fetal-side flow rates and attenuation on 3D power Doppler angiography. Perfusion of a placental lobule was commenced within 30 min of delivery and experimentation was successful in 8 of the 18 placenta obtained. ⋯ The power Doppler signal was markedly affected by attenuation leading to a complete loss of information at a depth of 6 cm in the model used. In conclusion this model can be adapted to provide a phantom to analyse and quantify 3D power Doppler signals and demonstrates that vascular indices within a tissue remain related to volume flow. This model provides further evidence that depth dependent attenuation of signal needs to be accounted for in any in vivo work where the probe is not in direct contact with the tissue of interest.