Placenta
-
Antenatal screening for aneuploidy is an established routine clinical practice worldwide. The same statistical methodology, developed and refined over three decades, might be adapted to screening for pre-eclampsia. ⋯ Whilst more data on some markers is still required modeling so far suggests that extending first trimester aneuploidy screening programs to include pre-eclampsia screening would yield a high detection. However, prospective studies are needed to verify the model predictions.
-
Placental development occurs under a low oxygen (2-8% O(2)) environment, which is critical for placental development and angiogenesis. In this study, we examined if hypoxia affected fibroblast growth factor-2 (FGF2)- and vascular endothelial growth factor (VEGF)-stimulated cell proliferation via the mitogen-activated protein kinase kinase 1/2 (MEK1/2)/extracellular signal-regulated kinases 1/2 (ERK1/2) and phosphatidylinositol-3 kinase (PI3K)/v-akt murine thymomaviral oncogene homologue (AKT1) pathways in human placental artery endothelial (HPAE) cells. We observed that under normoxia (approximately 20% O(2)), FGF2 and VEGF dose-dependently stimulated cell proliferation. ⋯ Conversely, LY294002 dose-dependently inhibited FGF2-, but not VEGF-stimulated cell proliferation. These data suggest that in the MEK1/2/ERK1/2 and PI3K/AKT1 pathways differentially mediate FGF2- and VEGF-stimulated HPAE cell proliferation. These results also indicate that hypoxia promotes FGF2- and VEGF-stimulated cell proliferation without further activation of the PI3K/AKT1 and MEK1/2/ERK1/2, respectively.
-
Intrauterine growth restriction (IUGR) is associated with chronic fetal hypoxia, altered placental vasodilatation and reduced endothelial nitric oxide synthase (eNOS) activity. In human umbilical vein endothelial cells (HUVEC) from pregnancies complicated with IUGR (IUGR cells) and in HUVEC from normal pregnancies (normal cells) cultured under hypoxia l-arginine transport is reduced; however, the mechanisms leading to this dysfunction are unknown. We studied hypoxia effect on l-arginine transport and human cationic amino acid transporters 1 (hCAT-1) expression, and the potential NO and protein kinase C alpha (PKCalpha) involvement. ⋯ Thus, IUGR- and hypoxia-reduced l-arginine transport could result from increased PKCalpha, but reduced eNOS activity leading to a lower hCAT-1 expression in HUVEC. In addition, IUGR endothelial cells are either not responsive or maximally affected by hypoxia. These mechanisms could be responsible for placental dysfunction in diseases where fetal endothelium is chronically exposed to hypoxia, such as IUGR.
-
To investigate placental vascular sonobiopsy using three-dimensional (3D) power Doppler ultrasound to assess placental vascularization in normal and growth restricted fetuses. ⋯ Our findings suggest that placental vascular sonobiopsy using 3D power Doppler ultrasound may provide new information on the assessment of placental vascularization in normal and FGR pregnancies, while placental perfusion is reduced in FGR compared to normal pregnancy. However, the data and its interpretation in our study should be taken with some degree of caution because of the small number of FGR subjects studied. Further studies involving a larger sample size of FGR pregnancies are needed to confirm the usefulness of placental vascular sonobiopsy using 3D power Doppler ultrasound in clinical practice.
-
Flow phantoms have been used to investigate and quantify three-dimensional power Doppler data but this is the first study to use the in vitro, dual perfused, placental perfusion model. We used this model to investigate and quantify the effect of variation in fetal-side flow rates and attenuation on 3D power Doppler angiography. Perfusion of a placental lobule was commenced within 30 min of delivery and experimentation was successful in 8 of the 18 placenta obtained. ⋯ The power Doppler signal was markedly affected by attenuation leading to a complete loss of information at a depth of 6 cm in the model used. In conclusion this model can be adapted to provide a phantom to analyse and quantify 3D power Doppler signals and demonstrates that vascular indices within a tissue remain related to volume flow. This model provides further evidence that depth dependent attenuation of signal needs to be accounted for in any in vivo work where the probe is not in direct contact with the tissue of interest.