Biomaterials
-
Comparative Study
Modulation of porosity in apatitic cements by the use of alpha-tricalcium phosphate-calcium sulphate dihydrate mixtures.
Calcium phosphate bone cements are injectable biomaterials that are being used in dental and orthopaedic applications through minimally invasive surgery techniques. Nowadays, apatitic bone cements based on alpha-tricalcium phosphate (alpha-TCP) are of special interest due to their self-setting behaviour when mixed with an aqueous liquid phase. In this study, a new method to improve osteointegration of alpha-TCP-based cements is presented. ⋯ The resulting hardening properties of the new biphasic cements are a combination between the progressive hardening due to the main alpha-TCP reactant and the progressive dissolution of the CSD phase, which render a porous material. It was observed that the maximum compressive strength of Biocement-H (45 MPa) decreased as the amount of CSD increased in the cement powder mixture ( approximately 30 MPa for 25 wt% of CSD). It was also observed that after complete dissolution of the CSD phase a porous apatitic structure appears with a mechanical compressive strength suitable for cancellous bone applications (10 MPa).
-
Comparative Study
Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures.
The use of bone cement to treat vertebral compression fractures in a percutaneous manner requires placement of the cement under fluoroscopic image guidance. To enhance visualization of the flow during injection and to monitor and prevent leakage beyond the confines of the vertebral body, the orthopedic community has described increasing the amount of radiopacifier in the bone cement. In this study, static tensile and compressive testing, as well as fully reversed fatigue testing, was performed on three PMMA-based bone cements. ⋯ KyphX HV-R was found to have comparable static mechanical properties and significantly greater fatigue life than either of the two control materials evaluated in the present study. The static tensile and compressive strengths for all three PMMA-based bone cements were found to be an order of magnitude greater than the expected stress levels within a treated vertebral body. The static and fatigue testing data collected in this study indicate that bone cement can be designed with barium sulfate levels sufficiently high to permit fluoroscopic visualization while retaining the overall mechanical profile of a conventional bone cement under typical in vivo loading conditions.
-
Comparative Study
Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix.
The objective of our study was to evaluate the behavior of ovine chondrocytes and bone marrow stromal cells (BMSC) on a matrix comprising type-I, -II, and -III collagen in vitro, and the healing of chondral defects in an ovine model treated with the matrix, either unseeded or seeded with autologous chondrocytes, combined with microfracture treatment. For in vitro investigation, ovine chondrocytes and BMSC were seeded on the matrix and cultured at different time points. Histological analysis, immunohistochemistry, biochemical assays for glycosaminoglycans, and real-time quantitative PCR for collagens were performed. ⋯ The cell-seeded group had the greatest quantity of repair tissue and the largest quantity of hyaline-like tissue. Although the collagen matrix is an adequate environment for BMSC in vitro, the additionally implanted unseeded collagen matrix did not increase the repair response after microfracture in chondral defects. Only the matrices seeded with autologous cells in combination with microfracture were able to facilitate the regeneration of hyaline-like cartilage.
-
Degrading metal alloys are a new class of implant materials suitable for bone surgery. The aim of this study was to investigate the degradation mechanism at the bone-implant interface of different degrading magnesium alloys in bone and to determine their effect on the surrounding bone. Sample rods of four different magnesium alloys and a degradable polymer as a control were implanted intramedullary into the femora of guinea pigs. ⋯ While the corrosion layer of all magnesium alloys accumulated with biological calcium phosphates, the corrosion layer was in direct contact with the surrounding bone. The results further showed high mineral apposition rates and an increased bone mass around the magnesium rods, while no bone was induced in the surrounding soft tissue. From the results of this study, there is a strong rationale that in this research model, high magnesium ion concentration could lead to bone cell activation.