Biomaterials
-
Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation.
The function and longevity of implantable microelectrodes for chronic neural stimulation depends heavily on the electrode materials, which need to present high charge injection capability and high stability. While conducting polymers have been coated on neural microelectrodes and shown promising properties for chronic stimulation, their practical applications have been limited due to unsatisfying stability. Here, poly(3,4-ethylenedioxythiophene) (PEDOT) doped with pure carbon nanotubes (CNTs) was electrochemically deposited on Pt microelectrodes to evaluate its properties for chronic stimulation. ⋯ The charge injection limit of the Pt microelectrode was significantly increased to 2.5 mC/cm(2) with the PEDOT/CNT coating. Further in vitro experiments also showed that the PEDOT/CNT coatings are non-toxic and support the growth of neurons. It is expected that this highly stable PEDOT/CNT composite may serve as excellent new material for neural electrodes.
-
Oxidative stress is a major component of harmful cascades activated in neurodegenerative disorders. We sought to elucidate possible effects of alginate oligosaccharide (AOS) on H(2)O(2)-induced cell death and to determine the underlying molecular mechanisms in neuron-like PC12 cells. We found that AOS treatment protected PC12 cells against H(2)O(2)-induced endoplasmic reticulum (ER) and mitochondrial-dependent apoptotic cell death. ⋯ These results suggest that treatment of PC12 cells with AOS can block H(2)O(2)-induced oxidative stress and caspase-dependent apoptotic cascades originating from both ER and mitochondria. Our in vivo experiments further confirm the neuroprotective potential of AOS against Aβ-induced neural damage. According to our data, the involvement of caspase-independent pathway in AOS-induced protection appears to be unlikely.