Biomaterials
-
Freeze-dried poly(D,L-lactic acid) macroporous scaffold filled with a fibrin solution containing Schwann cells (SCs) lentivirally transduced to produce and secrete D15A, a bi-functional neurotrophin with brain-derived neurotrophic factor and neurotrophin-3 activity, and to express green fluorescent protein (GFP) were implanted in the completely transected adult rat thoracic spinal cord. Control rats were similarly injured and then implanted with scaffolds containing the fibrin solution with SCs lentivirally transduced to produce express GFP only or with the fibrin solution only. Transgene production and biological activity in vitro, SC survival within the scaffold in vitro and in vivo, scaffold integration, axonal regeneration and myelination, and hind limb motor function were analyzed at 1, 2, and 6 weeks after implantation. ⋯ All groups demonstrated a similar improvement of hind limb motor function. Our findings demonstrated that few seeded SCs survived in vivo, which could account for the modest axonal regeneration response into and across the scaffold. For the development of SC-seeded macroporous scaffolds that effectively promote axonal regeneration in the injured spinal cord, the survival and/or total number of SCs in the scaffold needs to be improved.
-
Loosening of the femoral component in a total hip arthroplasty with concomitant bone loss can pose a problem for revision surgery due to inadequate structure in the remaining femur. While impaction allografting has shown promise, it has also shown serious complications, especially with moderate to severe bone loss. It may be possible to stabilize the graft layer with a bioresorbable cement to improve clinical results. ⋯ Bone fraction had a significant effect on compressive strength (p < 0.0001), compressive modulus (p < 0.0001), elongation (p < 0.01), tensile strength (p < 0.0001) and confined compressive modulus (p = 0.04). The addition of a bioresorbable cement to the allograft layer may improve the properties of the layer, preventing early subsidence seen in some clinical studies of impaction allografting, and therefore improving the clinical results. Further testing is required to evaluate the in vitro mechanical performance, as well as in vivo remodelling characteristics.
-
The polymer poly-N-acetylglucosamine (pGlcNAc) containing fiber material is becoming increasingly important as a topical agent for hemostasis at wound sites. The pGlcNAc polymeric fiber provides hemostasis through redundant mechanisms that include platelet activation for fibrin network formation. The research presented here better defines the mechanism for the effect of pGlcNAc containing fibers on platelet-mediated processes. ⋯ Confocal microscopy studies show that when platelet integrins contact plasma protein-saturated pGlcNAc fibers, an increase in intracellular free calcium for platelet activation occurs to drive surface expression of phosphatidyl serine (PS). Thus, a catalytic surface for thrombin generation and accelerated fibrin clot formation results from the interaction of platelets with pGlcNAc. These findings, when considered with the observation that pGlcNAc fibers also induce red blood cell agglutination and vasoconstriction, provides an explanation for the ability of the pGlcNAc material to provide hemostasis in a wide variety of clinical applications.
-
Comparative Study
Modulation of porosity in apatitic cements by the use of alpha-tricalcium phosphate-calcium sulphate dihydrate mixtures.
Calcium phosphate bone cements are injectable biomaterials that are being used in dental and orthopaedic applications through minimally invasive surgery techniques. Nowadays, apatitic bone cements based on alpha-tricalcium phosphate (alpha-TCP) are of special interest due to their self-setting behaviour when mixed with an aqueous liquid phase. In this study, a new method to improve osteointegration of alpha-TCP-based cements is presented. ⋯ The resulting hardening properties of the new biphasic cements are a combination between the progressive hardening due to the main alpha-TCP reactant and the progressive dissolution of the CSD phase, which render a porous material. It was observed that the maximum compressive strength of Biocement-H (45 MPa) decreased as the amount of CSD increased in the cement powder mixture ( approximately 30 MPa for 25 wt% of CSD). It was also observed that after complete dissolution of the CSD phase a porous apatitic structure appears with a mechanical compressive strength suitable for cancellous bone applications (10 MPa).
-
Comparative Study
Static and fatigue mechanical behavior of bone cement with elevated barium sulfate content for treatment of vertebral compression fractures.
The use of bone cement to treat vertebral compression fractures in a percutaneous manner requires placement of the cement under fluoroscopic image guidance. To enhance visualization of the flow during injection and to monitor and prevent leakage beyond the confines of the vertebral body, the orthopedic community has described increasing the amount of radiopacifier in the bone cement. In this study, static tensile and compressive testing, as well as fully reversed fatigue testing, was performed on three PMMA-based bone cements. ⋯ KyphX HV-R was found to have comparable static mechanical properties and significantly greater fatigue life than either of the two control materials evaluated in the present study. The static tensile and compressive strengths for all three PMMA-based bone cements were found to be an order of magnitude greater than the expected stress levels within a treated vertebral body. The static and fatigue testing data collected in this study indicate that bone cement can be designed with barium sulfate levels sufficiently high to permit fluoroscopic visualization while retaining the overall mechanical profile of a conventional bone cement under typical in vivo loading conditions.