The Journal of neuroscience : the official journal of the Society for Neuroscience
-
We investigated a spinal site for opioid modulation of itch-related scratching behavior in rats. Intradermal 5-HT (2%, 10 microl) elicited intermittent bouts of hindlimb scratching directed toward the injection site (nape of neck) beginning within minutes and lasting >1 hr. 5-HT-evoked scratching was significantly reduced by systemic administration of the opiate antagonist naltrexone but was not affected by systemic morphine at a dosage (3 mg/kg) that induces analgesia. Intradermal 5-HT elicited a significant increase in c-fos-like immunoreactivity (FLI) in superficial laminas I-III at the lateral aspect of the cervical C3-C6 dorsal horn compared with controls receiving intradermal saline. ⋯ The lack of effect of morphine suggests that intradermal 5-HT activates dorsal horn neurons, signaling itch but not pain. Attenuation of 5-HT-evoked scratching but not spinal FLI by naltrexone suggests a supraspinal site for its antipruritic action. In contrast, morphine significantly attenuated FLI elicited by intradermal capsaicin, a chemical that induces pain but not scratching.
-
Synaptic strengthening induced by brain-derived neurotrophic factor (BDNF) is associated with learning and is coupled to transcriptional activation. However, identification of the spectrum of genes associated with BDNF-induced synaptic plasticity and the correlation of expression with learning paradigms in vivo has not yet been studied. Transcriptional analysis of BDNF-induced synaptic strengthening in cultured hippocampal neurons revealed increased expression of the immediate early genes (IEGs), c-fos, early growth response gene 1 (EGR1), activity-regulated cytoskeletal-associated protein (Arc) at 20 min, and the secreted peptide VGF (non-acronymic) protein precursor at 3 hr. ⋯ We found a novel function for VGF by applying VGF peptides to neurons. C-terminal VGF peptides acutely increased synaptic charge in a dose-dependent manner, whereas N-terminal peptide had no effect. These observations indicate that gene profiling in vitro can reveal new mechanisms of synaptic strengthening associated with learning and memory.
-
To determine whether peripheral nerve injury has similar effects on all functional types of afferent neuron, we retrogradely labeled populations of neurons projecting to skin and to muscle with FluoroGold and lesioned various peripheral nerves in the rat. Labeled neurons were counted after different periods and related to immunohistochemically identified ectopic terminals and satellite cells in lumbar dorsal root ganglia. After 10 weeks, 30% of cutaneous afferent somata labeled from transected sural nerves had disappeared but, if all other branches of the sciatic nerve had also been cut, 60% of cutaneous neurons were lost. ⋯ Consistent with this, perineuronal rings containing tyrosine hydroxylase, calcitonin gene-related peptide, galanin, or synaptophysin were formed preferentially around cutaneous neurons. Selective lesions of predominantly cutaneous nerves triggered the formation of rings, but none were detected after selective lesions of muscle nerves. We conclude that cutaneous neurons are both more vulnerable and more associated with ectopic nerve terminals than muscle neurons in dorsal root ganglia after transection and ligation of peripheral nerves.
-
When acutely dissociated small-diameter dorsal root ganglion (DRG) neurons were stimulated with repeated current injections or prolonged application of capsaicin, their action potential firing quickly adapted. Because TTX-resistant (TTX-R) sodium current in these presumptive nociceptors generates a large fraction of depolarizing current during the action potential, we examined the possible role of inactivation of TTX-R sodium channels in producing adaptation. Under voltage clamp, TTX-R current elicited by short depolarizations showed strong use dependence at frequencies as low as 1 Hz, although recovery from fast inactivation was complete in approximately 10-30 msec. ⋯ The time constant for entry (approximately 200 msec) was independent of voltage from -20 mV to +60 mV, whereas recovery kinetics were moderately voltage dependent (time constant, approximately 1.5 sec at -60 mV and approximately 0.5 sec at -100 mV). Using a prerecorded current-clamp response to capsaicin as a voltage-clamp command waveform, we found that adaptation of firing occurred with a time course similar to that of development of slow inactivation. Thus, slow inactivation of the TTX-R sodium current limits the duration of small DRG cell firing in response to maintained stimuli and may contribute to cross desensitization between chemical and electrical stimuli.
-
The orbital and medial prefrontal cortex (OMPFC) receives inputs from the CA1/subicular (CA1/S) region of the ventral hippocampus and the basolateral nucleus of the amygdala (BLA). Despite many studies about these projections, little is known as to how CA1/S and BLA inputs converge and interact within the OMPFC. Extracellular recordings of single-unit activity in the OMPFC were performed in sodium pentobarbitone-anesthetized rats. ⋯ Similar results were also observed when reciprocal connections between the CA1/S and BLA were severed to exclude the influences of these connections on one another. From these studies, we concluded that excitatory and inhibitory inputs from the hippocampus and amygdala converge and interact in the v-PrL and IL. Furthermore, the results indicate that simultaneous activation of hippocampal and amygdalar neurons may be important for amplification of OMPFC neuronal activity.