The Journal of neuroscience : the official journal of the Society for Neuroscience
-
In the mammalian olfactory bulb, mitral cell dendrites release glutamate onto the dendritic spines of granule cells, which in turn release GABA back onto mitral dendrites. This local synaptic circuit forms the basis for reciprocal dendrodendritic inhibition mediated by ionotropic GABA(A) receptors in mitral cells. Surprisingly little is known about neurotransmitter modulation of dendrodendritic signaling in the olfactory bulb. ⋯ To explore the mechanism of action of GABA(B) receptors further, we show that baclofen inhibits high-voltage-activated calcium currents in granule cells. Together, these findings suggest that GABA(B) receptors modulate dendrodendritic inhibition primarily by inhibiting granule cell calcium channels and reducing the release of GABA. Furthermore, we show that endogenous GABA regulates the strength of dendrodendritic inhibition via the activation of GABA(B) autoreceptors.
-
By 2 months after unilateral cervical spinal cord injury (SCI), respiratory motor output resumes in the previously quiescent phrenic nerve. This activity is derived from bulbospinal pathways that cross the spinal midline caudal to the lesion (crossed phrenic pathways). To determine whether crossed phrenic pathways contribute to tidal volume in spinally injured rats, spontaneous breathing was measured in anesthetized C2 hemisected rats at 2 months after injury with an intact ipsilateral phrenic nerve, or with ipsilateral phrenicotomy performed at the time of the SCI (i.e., crossed phrenic pathways rendered ineffective) (dual injury). ⋯ Dual injury rats also had elevated baseline burst frequency. Together, these results demonstrate a functional role of crossed phrenic activity after SCI. Moreover, by preventing ipsilateral phrenic motor recovery in rats with unilateral SCI, segmental and supraspinal changes could be induced in contralateral respiratory motor output beyond that seen with SCI alone.
-
The CNS is shielded from systemic influences by two separate barriers, the blood-brain barrier (BBB) and the blood-to-CSF barrier. Failure of either barrier bears profound significance in the etiology and diagnosis of several neurological diseases. Furthermore, selective opening of BBB tight junctions provides an opportunity for delivery of otherwise BBB impermeant drugs. ⋯ The time course of TTR extravasation was compared with release from the brain of another BBB integrity marker, S-100beta (11 kDa). Kinetic analysis revealed that the appearance of S-100beta, presumably originating from perivascular astrocytic end feet, preceded extravasation of TTR by several minutes. Because TTR is localized primarily in choroid plexus and, as a soluble monomer, in CSF, we concluded that although S-100beta is a marker of BBB integrity, TTR instead may be a peripheral tracer of blood-to-cerebrospinal barrier.
-
To clarify the mechanism underlying improvement of parkinsonian signs by high-frequency electrical stimulation (HFS) of the subthalamic nucleus (STN), we investigated the effects of STN HFS on neuronal activity of the internal and external segment of the globus pallidus (GPi and GPe, respectively) in two rhesus monkeys rendered parkinsonian by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. A scaled-down version of the chronic stimulating electrode used in humans, consisting of four metal contacts 0.50 mm in length each separated by 0.50 mm, was implanted through a cephalic chamber targeting the STN. Histological reconstruction revealed that the cathode was located in the STN in both monkeys. ⋯ Poststimulus time histograms of single neurons triggered by 2 Hz STN stimulation pulses at 2.4-3.0 V revealed short-latency excitations at 2.5-4.5 and 5.5-7.0 msec after stimulation onset and inhibitions at 1.0-2.5, 4.5-5.5, and 7.0-9.0 msec for both GPe and GPi neurons. These short-latency responses were present with 136 Hz stimulation, at voltages effective for alleviation of parkinsonian signs, resulting in a significant increase in mean discharge rate and a stimulus-synchronized regular firing pattern. These results indicate that activation of the STN efferent fibers and resultant changes in the temporal firing pattern of neurons in GPe and GPi underlie the beneficial effect of HFS in the STN in Parkinson's disease and further support the role of temporal firing patterns in the basal ganglia in the development of Parkinson's disease and other movement disorders.
-
The effects of kainic acid (KA) on neurogenesis in the developing rat hippocampus were investigated. Neonatal [postnatal day (P) 7] rats received a single bilateral intracerebroventricular infusion of KA (50 nmol in 1.0 microl) or vehicle. At P14, P25, P40, and P60, the spatial and temporal relationships between the neurodegeneration and neurogenesis induced by KA were explored using terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) to detect the dying cells and 5-bromodeoxyuridine (BrdU) to label newly generated cells. ⋯ Newly generated cells in the CA3 subfield only rarely expressed glial markers (8%). These results suggest that a single exposure to KA at P7 has both immediate (inhibition) and delayed (stimulation) effects on neurogenesis within the dentate gyrus of developing rats. KA administration resulted in both neuronal apoptosis and neurogenesis within the CA3 subfield, suggesting that the purpose of neurogenesis in the CA3 is to replace neurons lost to apoptosis.