Progress in neuro-psychopharmacology & biological psychiatry
-
Prog. Neuropsychopharmacol. Biol. Psychiatry · Mar 2012
Epistatic effects between variants of kappa-opioid receptor gene and A118G of mu-opioid receptor gene increase susceptibility to addiction in Indian population.
Unequivocal evidence suggests contribution of κ-opioid receptor (KOR) in addiction to drugs of abuse. A study was undertaken to identify the single nucleotide polymorphisms (SNP) at selective areas of kappa opioid receptor 1 (OPRK1) gene in heroin as well as in alcohol addicts and to compare them with that in control population. The potential interaction of the identified KOR SNPs with A118G of μ opioid receptor was also investigated. ⋯ Our study suggests that set associations of polymorphisms may be important in determining the risk profile for complex diseases such as addiction.
-
Prog. Neuropsychopharmacol. Biol. Psychiatry · Jan 2012
Meta Analysis Comparative StudyVoxelwise meta-analysis of gray matter reduction in major depressive disorder.
Voxel-based morphometry (VBM) has been widely used in studies of major depressive disorder (MDD) and has provided cumulative evidence of gray matter abnormalities in patients relative to controls. Thus we performed a meta-analysis to integrate the reported studies to determine the consistent gray matter alterations in MDD. ⋯ Meta-analysis of all primary VBM studies indicates that significant gray matter reductions in MDD are localized in a distributed neural network which includes frontal, limbic and thalamic regions. Future studies will benefit from the use of a longitudinal approach to examine anatomical and functional abnormalities within this network and their relationship to clinical profile, particularly in first-episode and drug-naive MDD patients.
-
Prog. Neuropsychopharmacol. Biol. Psychiatry · Jan 2012
Comparative StudyBlockade of microglial activation reduces mechanical allodynia in rats with compression of the trigeminal ganglion.
The present study investigated the role of microglia and p38 MAPK in the development of mechanical allodynia in rats with compression of the trigeminal ganglion. Male Sprague-Dawley rats weighing 250-260 g were used. Under pentobarbital sodium anesthesia, the animals were mounted onto a stereotaxic frame and given injections of 4% agar solution (10 μL) to compress the trigeminal ganglion. ⋯ Intracisternal administration of 100 μg of minocycline significantly inhibited both mechanical allodynia and activation of microglia produced by compression of the trigeminal ganglion. Intracisternal administration of 0.1, 1, or 10 μg of SB203580, a p38 MAPK inhibitor, also significantly decreased mechanical allodynia and p38 MAPK activation in the trigeminal ganglion-compressed group. These results suggest that activation of p38 MAPK in the microglia is an important step in the development of mechanical allodynia in rats with compression of the trigeminal ganglion and that the targeted blockade of microglial p38 MAPK pathway is a potentially important new treatment strategy for trigeminal neuralgia-like nociception.
-
Prog. Neuropsychopharmacol. Biol. Psychiatry · Dec 2011
Effects of enoxaparin in the rat hippocampus following traumatic brain injury.
Purpose of this study was to investigate the effects of low molecular weight heparin, enoxaparin, on different parameters of the hippocampal damage following traumatic brain injury (TBI) in the rat. TBI of moderate severity was performed over the left parietal cortex using the lateral fluid percussion brain injury model. Animals were s.c. injected with either enoxaparin (1mg/kg) or vehicle 1, 7, 13, 19, 25, 31, 37, and 43 h after the TBI induction. ⋯ TBI also induced hippocampal reactive astrocytosis and neurodegeneration. Enoxaparin significantly decreased the hippocampal TBARS and oxidized protein levels, COX-2 overexpression and reactive gliosis, but it did not influence the SOD and GSH-Px activities, pro-IL-1β and active caspase-3 overexpressions as well as neurodegeneration following TBI. These findings demonstrate that enoxaparin may reduce oxidative damage, inflammation and astrocytosis following TBI in the rat and could be a candidate drug for neuroprotective treatment of this injury.
-
Prog. Neuropsychopharmacol. Biol. Psychiatry · Aug 2011
Vulnerability factors in anxiety: Strain and sex differences in the use of signals associated with non-threat during the acquisition and extinction of active-avoidance behavior.
Rats that exhibit a behaviorally inhibited temperament acquire active-avoidance behaviors quicker, and extinguish them slower, than normal outbred rats. Here we explored the contribution of stimuli that signal periods of non-threat (i.e. safety signals) in the process of acquiring active-avoidance behavior. Utilizing a discrete lever-press escape-avoidance protocol, outbred Sprague-Dawley (SD) rats and inbred, behaviorally inhibited, Wistar-Kyoto (WKY) rats were tested under conditions where a flashing light was either presented or not during periods of non-threat (the inter-trial interval, ITI). ⋯ No differences in acquisition, as a function of this visual stimulus, were observed within the male WKY rats, but, as was observed in avoidance learning, male WKY rats extinguished slower than male SD rats. Thus, avoidance susceptibility for male WKY rats may be tied both to the presence of non-threat signals as well as a resistance to extinguish Pavlovian-conditioned associations. Female susceptibility to resist extinguishing avoidant behavior is discussed with respect to the possible role of stimuli serving as occasion setters for threat contexts.