Thrombosis research
-
Bleeding and thrombosis are the ultimate clinical outcomes of aberrations in the haemostatic process. Haemostasis prevents excessive blood loss due to the effort of various compartments like the vasculature, blood cells, coagulation and fibrinolysis. The complexity of all processes involved makes the diagnosis of aberrations difficult, cumbersome and expensive. ⋯ Despite years of research, such an assay is not yet available; however, some interesting candidates are under development and combine the effects of various compartments. This review describes the development of global haemostasis assays and summarizes the current state of the art of these haemostasis assays covering thrombin and plasmin generation, turbidity and thromboelastography/thromboelastometry. Finally, we discuss the applicability of global assays in clinical practice and we provide a future perspective on the ongoing development of automation and miniaturisation as it is our belief that these developments will benefit the standardization of global haemostasis assays.
-
Thrombosis research · Jun 2012
The procoagulant properties of purified fibrinogen concentrate are enhanced by carbon monoxide releasing molecule-2.
Fibrinogen concentrate has been demonstrated to enhance coagulation in vitro and in several clinical settings of coagulopathy. We have recently demonstrated that carbon monoxide releasing molecule-2 (tricarbonyldichlororuthenium (II) dimer; CORM-2) enhances fibrinogen as a substrate for thrombin via an attached heme. The objective of this study was to determine if CORM-2 modified fibrinogen concentrate would enhance coagulation more effectively than CORM-2 naïve fibrinogen concentrate. ⋯ CORM-2 modification of fibrinogen concentrate significantly enhanced the velocity of clot formation (30-50%) and strength (15-31%) in fibrinogen deficient plasma. Similarly, while diluted plasma-derived thrombi demonstrated a marked decrease in velocity of formation (54%) and strength (61%), fibrinogen concentrate significantly enhanced velocity (217%) and strength (171%); however, CORM-2 modified fibrinogen concentrate significantly increased velocity (303%) and strength (205%) to a greater extent. Additional in vitro investigation and in vivo preclinical assessments of the hemostatic efficacy of CORM-2 modified fibrinogen concentrate are warranted.