Magnetic resonance imaging
-
In this study, a novel method for dynamic parallel image acquisition and reconstruction is presented. In this method, called k-space inherited parallel acquisition (KIPA), localized reconstruction coefficients are used to achieve higher reduction factors, and lower noise and artifact levels compared to that of generalized autocalibrating partially parallel acquisition (GRAPPA) reconstruction. In KIPA, the full k-space for the first frame and the partial k-space for later frames are required to reconstruct a whole series of images. ⋯ The local determination of KIPA reconstruction coefficients is essential to adjusting them according to the local signal-to-noise ratio characteristics of k-space data. The proposed algorithm is applicable to dynamic imaging with arbitrary k-space sampling trajectories. Simulations of magnetic resonance thermometry using the KIPA method with a reduction factor of 6 and using dynamic imaging studies of human subjects with reduction factors of 4 and 6 have been performed to prove the feasibility of our method and to show apparent improvement in image quality in comparison with GRAPPA for dynamic imaging.
-
Comparative Study
Comparison of multislice and single-slice acquisitions for pulsed arterial spin labeling measurements of cerebral perfusion.
Multislice Q2TIPS is a widely used pulsed arterial spin labeling (PASL) technique for efficient and accurate quantification of cerebral blood flow (CBF). Slices are typically acquired inferior to superior from a tagging plane. Superior slices show signal loss greater than the loss expected from blood T1 decay. ⋯ GM SNR from single-slice acquisitions was significantly higher at slices 4-6 in Study 2 and at slices 2-6 in Study 3 compared to multislice acquisitions. Signal loss in distal slices of multislice acquisitions can be attributed to the destruction of tagged bolus in addition to blood T1 decay. If limited brain coverage is acceptable, perfusion images with greater SNR are achievable with limited slices and placement of the tagging region immediately adjacent to the site of interest.
-
A 3 T MLEV-point-resolved spectroscopy (PRESS) sequence employing optimized spectral-spatial and very selective outer-voxel suppression pulses was tested in 25 prostate cancer patients. At an echo time of 85 ms, the MLEV-PRESS sequence resulted in maximally upright inner resonances and minimal outer resonances of the citrate doublet of doublets. Magnetic resonance spectroscopic imaging (MRSI) exams performed at both 3 and 1.5 T for 10 patients demonstrated a 2.08+/-0.36-fold increase in signal-to-noise ratio (SNR) at 3 T as compared with 1.5 T for the center citrate resonances. ⋯ Due to the twofold increase in spectral resolution at 3 T and the improved magnetic field homogeneity provided by susceptibility-matched endorectal coils, the choline resonance was better resolved from polyamine and creatine resonances as compared with 1.5 T spectra. In prostate cancer patients, the elevation of choline and the reduction of polyamines were more clearly observed at 3 T, as compared with 1.5 T MRSI. The increased SNR and corresponding spatial resolution obtainable at 3 T reduced partial volume effects and allowed improved detection of the presence and extent of abnormal metabolite levels in prostate cancer patients, as compared with 1.5 T MRSI.
-
Arterial spin labeling (ASL) perfusion measurements allow the follow-up of muscle perfusion with high temporal resolution during a stress test. Automated image processing is proposed to estimate perfusion maps from ASL images. It is based on two successive analyses: at first, automated rejection of the image pairs between which a large displacement is detected is performed, followed by factor analysis of the dynamic data and cluster analysis to classify pixels with large signal variation characteristic of vessels. ⋯ Data from 10 subjects (five normal volunteers and five elite sportsmen) had been analyzed. Resulting time perfusion curves from a region of interest (ROI) in active muscles show a good accordance whether extracted with automated processing or with manual processing. This method of functional segmentation allows automated suppression of vessels and fast visualization of muscles with high, medium or low perfusion, without any a priori knowledge.