Magnetic resonance imaging
-
Recently, the possibility to use both magnitude and phase image sets for the statistical evaluation of fMRI has been proposed, with the prospective of increasing both statistical power and the spatial specificity. In the present work, several issues that affect the spatial and temporal stability in fMRI phase time series in the presence of physiologic noise processes are reviewed, discussed and illustrated by experiments performed at 3 T. The observed phase value is a fingerprint of the underlying voxel averaged magnetic field variations. ⋯ Although the manifestations of physiological noise were in general more pronounced in phase than in magnitude images, due to phase wraps and global Bo effects, we suggest that a phase stability similar to that found in magnitude could theoretically be achieved by adequate correction methods. Moreover, as suggested by our experimental data regarding BOLD-related phase effects, phase stability could even supersede magnitude stability in voxels covering dense microvascular networks with BOLD-related fluctuations as the dominant noise contributor. In the interest of the quality of both BOLD-based and nc-MRI methods, future studies are required to find alternative methods that can improve phase stability, designed to match the temporal and spatial scale of the underlying neuronal activity.
-
Resting-state functional magnetic resonance imaging (RS-fMRI) is a technique used to investigate the spontaneous correlations of blood-oxygen-level-dependent signals across different regions of the brain. Using functional connectivity tools, it is possible to investigate a specific RS-fMRI network, referred to as "default-mode" (DM) network, that involves cortical regions deactivated in fMRI experiments with cognitive tasks. Previous works have reported a significant effect of aging on DM regions activity. ⋯ A negative correlation of the ICA voxel weights with age existed in all DM regions at a variable degree. As an alternative approach, we generated a distributed DM spatial template and evaluated the correlation of each individual DM component fit to this template with age. Using a "leave-one-out" procedure, we discuss the importance of removing the bias from the DM template-generation process.
-
Recent studies in the human visual cortex using diffusion-weighted functional magnetic resonance imaging (fMRI) have suggested that the apparent diffusion coefficient (ADC) decreases, in contrast to earlier studies that consistently reported ADC increases during neuronal activation. The changes, in either case, are hypothesized to provide the ability to improve the spatial specificity of fMRI over conventional blood-oxygenation-level-dependent (BOLD) methods. Most recently, the ADC decreases have been suggested as originating from transient cell swelling caused by either shrinkage of the extracellular space or some intracellular neuronal process that precedes the hemodynamic response. ⋯ When using low b-values, delayed increases in the tissue ADC during activation were observed. No significant changes in ADC were observed in surface vessels for any diffusion weighting. Furthermore, we did not observe any temporal differences in the highly diffusion-weighted data compared to BOLD; however, although the changes may likely be vascular in nature, they are highly localized to the tissue areas.
-
Comparative Study
Is diffusion anisotropy an accurate monitor of myelination? Correlation of multicomponent T2 relaxation and diffusion tensor anisotropy in human brain.
We compare T2-relaxation and diffusion tensor data from normal human brain. The relationships between myelin-water fraction (MWF) and various diffusion tensor measures [e.g., fractional anisotropy (FA), perpendicular diffusivity (ADC perpendicular) and mean diffusivity
] in white matter (WM) and gray matter (GM) structures in the brain were examined in 16 normal volunteers at 1.5 T and 6 normal subjects at 3.0 T and mean diffusivity. We found some degree of linear correlation between these measurements, but by using region of interest (ROI)-based analysis, we also observed several structures which seemed to deviate significantly from a linear relationship. ⋯ We confirmed that WM structures, in general, have higher diffusional anisotropy than GM structures and also have higher myelin-water content. However, our findings suggest that in the highly organized fibre arrangement of compact WM structures such as the genu of the corpus callosum, elevated degrees of diffusional anisotropies are measured, which do not necessarily correspond to an elevated myelin content but more likely reflect the highly organized directionality of fibre bundles in these areas (low microscopic and macroscopic tortuosity) as well as strongly restricted diffusion in the interstitial space between the myelinated axons. Conversely, in structures with disorganized fibre bundles and multiple fibre crossings, such as the minor and major forceps, low FA values were measured, which does not necessarily reflect a decrease myelin-water content.