Magnetic resonance imaging
- 
    Comparative StudyDifferentiation of central gland prostate cancer from benign prostatic hyperplasia using monoexponential and biexponential diffusion-weighted imaging.To investigate biexponential apparent diffusion parameters of prostate central gland (CG) cancer, stromal hyperplasia (SH), and glandular hyperplasia (GH) and compare with monoexponential apparent diffusion coefficient (ADC) value for discriminating prostate cancer from benign hyperplasia. ⋯ Biexponential DWI could potentially improve the differentiation of prostate cancer in CG, and the ADCf of the biexponential model offers better accuracy than ADC. 
- 
    Comparative StudyFalse positive control of activated voxels in single fMRI analysis using bootstrap resampling in comparison to spatial smoothing.Functional magnetic resonance imaging (fMRI) is an effective tool for the measurement of brain neuronal activities. To date, several statistical methods have been proposed for analyzing fMRI datasets to select true active voxels among all the voxels appear to be positively activated. Finding a reliable and valid activation map is very important and becomes more crucial in clinical and neurosurgical investigations of single fMRI data, especially when pre-surgical planning requires accurate lateralization index as well as a precise localization of activation map. ⋯ The smoothing may lead to a shift and enlargement of activation regions, and in some extend, unification of distinct regions. In this article, we propose a bootstrap resampling technique for analyzing single fMRI dataset with the aim of finding more accurate and reliable activated regions. This method can remove false positive voxels and present high localization accuracy in activation map without any spatial smoothing and statistical threshold setting. 
- 
    
    Compressed sensing (CS) provides a promising framework for MR image reconstruction from highly undersampled data, thus reducing data acquisition time. In this context, sparsity-promoting regularization techniques exploit the prior knowledge that MR images are sparse or compressible in a given transform domain. In this work, a new regularization technique was introduced by iterative linearization of the non-convex smoothly clipped absolute deviation (SCAD) norm with the aim of reducing the sampling rate even lower than it is required by the conventional l1 norm while approaching an l0 norm. ⋯ The SCAD regularization improves the performance of l1-based regularization technique, especially at reduced sampling rates, and thus might be a good candidate for some applications in CS-MRI. 
- 
    
    To report MRI spinal changes after surgical infusion of bone marrow stem cells (BMSc) in ALS patients and assess their correlation with clinical events and functional performance. ⋯ Infusion of BMSc produces a variety of spinal changes apparently unrelated with clinical events and disease worsening. 
- 
    
    Resting-state functional magnetic resonance imaging (fMRI) is a recent breakthrough in neuroimaging research able to describe "in vivo" the spontaneous baseline neuronal activity characterized by blood oxygen level dependent (BOLD) signal fluctuations at slow frequency (0.01-0.1Hz) that, in the absence of any task, forms spatially distributed functional connectivity networks, called resting state networks (RSNs). The aim of this study was to investigate, in the young and healthy population, the changing of the RSNs after acute ingestion of an alcohol dose able to determine a blood concentration (0.5g/L) that barely exceeds the legal limits for driving in the majority of European Countries. Fifteen healthy volunteers underwent two fMRI sessions using a 1.5T MR scanner before and after alcohol oral consumption. ⋯ Functional data elaboration was carried out using the probabilistic independent component analysis (PICA). Spatial maps so obtained were further organized, with MELODIC multisession temporal concatenation FSL option, in a cluster representing the group of pre-alcohol sessions and the group of post-alcohol sessions, followed by the dual regression approach in order to evaluate the increase or decrease in terms of connectivity in the RSNs between the two sessions at group level. The results we obtained reveal that acute consumption of alcohol reduces in a significant way the BOLD signal fluctuations in the resting brain selectively in the sub-callosal cortex (SCC), in left temporal fusiform cortex (TFC) and left inferior temporal gyrus (ITG), which are cognitive regions known to be part of the reward brain network and the ventral visual system.