Magnetic resonance imaging
-
Retraction Of Publication
WITHDRAWN: 3D-printed RF probeheads for low-cost, high-throughput NMR.
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
-
A phantom-based quality assurance (QA) protocol was developed for a multicenter clinical trial including high angular resolution diffusion imaging (HARDI). A total of 27 3T MR scanners from 2 major manufacturers, GE (Discovery and Signa scanners) and Siemens (Trio and Skyra scanners), were included in this trial. With this protocol, agar phantoms doped to mimic relaxation properties of brain tissue are scanned on a monthly basis, and quantitative procedures are used to detect spiking and to evaluate eddy current and Nyquist ghosting artifacts. ⋯ Software upgrades and hardware replacement sometimes affected SNR substantially but sometimes did not. In light of these results, it is important to monitor longitudinal SNR with phantom QA to help interpret potential effects on in vivo measurements. Our phantom QA procedure for HARDI scans was successful in tracking scanner performance and detecting unwanted artifacts.
-
To assess the sensitivity of non-localized, whole-head 1H-MRS to an individual's serial changes in total-brain NAA, Glx, Cr and Cho concentrations - metabolite metrics often used as surrogate markers in neurological pathologies. ⋯ Subject to the assumption that in neurological disorders NAA, Glx, Cr and Cho changes represent brain-only pathology and not muscles, bone marrow, adipose tissue or epithelial cells, this approach enables us to quantify them, thereby adding specificity to the assessment of the total disease load. This will facilitate monitoring diffuse pathologies with faster measurement, more extensive (~90% of the brain) spatial coverage and sensitivity than localized 1H-MRS.
-
Investigation of the feasibility of the R2⁎ mapping techniques by using latest theoretical models corrected for confounding factors and optimized for signal to noise ratio. ⋯ Complex fitting and fat-correction with multi-exponential decay formulation outperforms the conventional single-decay approximation in various diagnostic scenarios. Although it still lacks of numerical stability, which requires model enhancement and support from spectroscopy, it offers promising perspectives for the development of relaxometry as a reliable tool to improve tissue characterization and monitoring of neuromuscular disorders.