Magnetic resonance imaging
-
To provide whole brain grey matter (GM) to white matter (WM) contrast enhanced T1W (T1WE) images, multi-echo quantitative susceptibility mapping (QSM), proton density (PD) weighted images, T1 maps, PD maps, susceptibility weighted imaging (SWI), and R2* maps with minimal misregistration in scanning times <5min. ⋯ STAGE imaging offers the potential to create a standardized brain imaging protocol providing four pieces of quantitative tissue property information and multiple types of qualitative information in just 5min.
-
To explore microcirculation features with intravoxel incoherent motion (IVIM) and to compare IVIM with CT perfusion imaging (CTPI) and microvessel density (MVD). ⋯ IVIM parameters can characterize microcirculation to certain extent and separate it from pure water molecular diffusion. There is fair correlation between D or ADC value and CTPI parameters or MVD, but no correlation between D* or f value and CTPI parameters or MVD except f value and BV, which is still unclear and need further clinical studies to validate.
-
Blood oxygenation level-dependent (BOLD) contrast appears through a variation in the transverse relaxation rate of magnetic resonance signals induced by neurovascular coupling and is known to have nonlinear characteristics along echo time (TE) due to the intra-vasculature. However, the physiological causes of this nonlinearity are unclear. ⋯ For this purpose, we used a multi-echo gradient-echo echo-planar imaging sequence and developed a computational method to estimate the physiological information from the TE-dependent BOLD signals. The results showed that the average chemical exchange time in the intra-vasculature varied during stimulation, which might be the essential source of the nonlinearity.