Magnetic resonance imaging
-
Quantification of the T2∗ relaxation time constant is relevant in various magnetic resonance imaging applications. Mono- or bi-exponential models are typically used to determine these parameters. However, in case of complex, heterogeneous tissues these models could lead to inaccurate results. We compared a model, provided by the fractional-order extension of the Bloch equation with the conventional models. ⋯ In high SNR cases, the fractional order and bi-exponential models are both performing well with low bias. However, in all observed cases, one of the bi-exponential components has high standard deviation in T2∗. The bi-exponential model is suitable for T2∗ mapping, but we recommend using the fractional order model for cases of low SNR.
-
Different trends of echo time dependent gradient recalled echo MRI signals in different brain regions have been attributed to signal compartments in image voxels. It remains unclear how variations in gradient recalled echo MRI signals change as a function of MRI field strength, and how data processing may impact signal compartment parameters. We used two popular quantitative susceptibility mapping methods of processing raw phase images (Laplacian and path-based unwrapping with V-SHARP) and expressed values in the form of induced frequency shifts (in Hz) in six specific brain regions at 3T and 7T. ⋯ We also found the temporal trends in the signal and compartment frequency shifts to change with the method used to process images. The inter-participant averaged trends were consistent between 3T and 7T for each quantitative susceptibility pipeline. However, signal compartment frequency shifts generated using different pipelines may not be comparable.
-
To explore quantitative parameters obtained by dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) with Gd-EOB-DTPA in discriminating early-stage liver fibrosis (LF) in a rabbit model. ⋯ Among quantitative parameters of Gd-EOB-DTPA DCE MRI, Ktrans was the best predictor for quantitatively differentiating early-stage LF.