Magnetic resonance imaging
-
Subject motion during MRI scan can result in severe degradation of image quality. Existing motion correction algorithms rely on the assumption that no information is missing during motions. However, this assumption does not hold when out-of-FOV motion happens. Currently available algorithms are not able to correct for image artifacts introduced by out-of-FOV motion. The purpose of this study is to demonstrate the feasibility of incorporating convolutional neural network (CNN) derived prior image into solving the out-of-FOV motion problem. ⋯ In conclusion, the proposed CNN-based motion correction algorithm can significantly reduce out-of-FOV motion artifacts and achieve better image quality compared to AF-based algorithm.
-
To evaluate the diagnostic performance of a multiparametric approach to breast lesions including apparent diffusion coefficient (ADC) from diffusion-weighted images (DWI), maximum slope (MS) from ultrafast dynamic contrast enhanced (UF-DCE) MRI, lesion size, and patient's age. ⋯ A multiparametric model using ADC from DWI, MS from UF-DCE MRI, and patient's age showed excellent diagnostic performance, with greater contribution of ADC. Combining DWI and UF-DCE MRI might reduce scanning time while preserving diagnostic performance.
-
Comparative Study
The comparison of high-resolution diffusion weighted imaging (DWI) with high-resolution contrast-enhanced MRI in the evaluation of breast cancers.
We sought to investigate the performance of high resolution (HR) diffusion-weighted imaging (DWI) using readout-segmented echo-planar imaging (rs-EPI), compared with high-resolution contrast-enhanced MRI (HR CE-MRI) in terms of morphological accuracy, on the basis of the Breast Imaging and Reporting and Data System (BI-RADS) MRI descriptors and lesion size. ⋯ The findings in morphology and lesion extent showed high agreement between HR-DWI and HR CE-MRI for malignant breast lesions. These results imply the potential of applying HR-DWI for evaluation of malignant breast lesions using BI-RADS MRI.
-
To investigate magnetic resonance neurography (MRN) of the lumbosacral plexus (LSP) with cerebrospinal fluid (CSF) suppression by using submillimeter resolution for three-dimensional (3D) turbo spin echo (TSE) imaging. ⋯ Applying frequency-encoding voxel sizes in submillimeter range for 3D TSE imaging with frequency encoding parallel to the feet/head axis may considerably improve MRN of LSP pathology in adults in the future because of favorable CSF suppression.