Magnetic resonance imaging
-
Retraction Of Publication
WITHDRAWN: 3D-printed RF probeheads for low-cost, high-throughput NMR.
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
-
A phantom-based quality assurance (QA) protocol was developed for a multicenter clinical trial including high angular resolution diffusion imaging (HARDI). A total of 27 3T MR scanners from 2 major manufacturers, GE (Discovery and Signa scanners) and Siemens (Trio and Skyra scanners), were included in this trial. With this protocol, agar phantoms doped to mimic relaxation properties of brain tissue are scanned on a monthly basis, and quantitative procedures are used to detect spiking and to evaluate eddy current and Nyquist ghosting artifacts. ⋯ Software upgrades and hardware replacement sometimes affected SNR substantially but sometimes did not. In light of these results, it is important to monitor longitudinal SNR with phantom QA to help interpret potential effects on in vivo measurements. Our phantom QA procedure for HARDI scans was successful in tracking scanner performance and detecting unwanted artifacts.
-
To assess the sensitivity of non-localized, whole-head 1H-MRS to an individual's serial changes in total-brain NAA, Glx, Cr and Cho concentrations - metabolite metrics often used as surrogate markers in neurological pathologies. ⋯ Subject to the assumption that in neurological disorders NAA, Glx, Cr and Cho changes represent brain-only pathology and not muscles, bone marrow, adipose tissue or epithelial cells, this approach enables us to quantify them, thereby adding specificity to the assessment of the total disease load. This will facilitate monitoring diffuse pathologies with faster measurement, more extensive (~90% of the brain) spatial coverage and sensitivity than localized 1H-MRS.
-
Investigation of the feasibility of the R2⁎ mapping techniques by using latest theoretical models corrected for confounding factors and optimized for signal to noise ratio. ⋯ Complex fitting and fat-correction with multi-exponential decay formulation outperforms the conventional single-decay approximation in various diagnostic scenarios. Although it still lacks of numerical stability, which requires model enhancement and support from spectroscopy, it offers promising perspectives for the development of relaxometry as a reliable tool to improve tissue characterization and monitoring of neuromuscular disorders.
-
Resting state functional magnetic resonance imaging (rsfMRI) has been widely used to measure functional connectivity between cortical regions of the brain. However, there have been minimal reports of bold oxygenation level dependent (BOLD) signals in white matter, and even fewer attempts to detect resting state connectivity. Recently, there has been growing evidence that suggests that reliable detection of white matter BOLD signals may be possible. ⋯ We performed imaging studies on live squirrel monkeys under different levels of isoflurane anesthesia at 9.4T. We found 1) the fractional power (0.01-0.08Hz) in white matter was between 60 to 75% of the level in gray matter; 2) the power in both gray and white matter low frequencies decreased monotonically in similar manner with increasing levels of anesthesia; 3) the distribution of fractional anisotropy values of the functional tensors in white matter were significantly higher than those in gray matter; and 4) the functional tensor eigenvalues decreased with increasing level of anesthesia. Our results suggest that as anesthesia level changes baseline neural activity, white matter signal fluctuations behave similarly to those in gray matter, and functional tensors in white matter are affected in parallel.