Magnetic resonance imaging
-
Controlled Clinical Trial
White matter changes in multiple sclerosis: correlation of q-space diffusion MRI and 1H MRS.
To explore the diagnostic usefulness of high b-value diffusion magnetic resonance brain imaging ("q-space" imaging) in multiple sclerosis (MS). More specifically, we aimed at evaluating the ability of this methodology to identify tissue damage in the so-called normal-appearing white matter (NAWM). ⋯ High b-value diffusion imaging can detect tissue damage in the NAWM of MS patients. Despite the theoretical limitation of this method, in practice it provides additional information which is clinically relevant for detection of tissue damage not seen in conventional imaging techniques.
-
A theoretical model of free evolution between repeated magnetic transfer (MT) pulses was extended to continuous-wave (CW)-like conditions showing that only the repetitive "direct" saturation of bulk water changes the transient and stationary behavior. The influence of the pulse repetition period (PR) on progressive saturation was studied in cortical gray matter (GM) and central white matter (WM) under conditions of short periods of free evolution and strong macromolecular saturation. Interpulse delays of 3 ms were achieved in vivo on a 1.5-T MR system with bell-shaped MT pulses of 12-ms duration and nominal flip angles of up to 1440 degrees and single-shot readout by a stimulated echo acquisition mode localization sequence. ⋯ This limit is approached at PR below an estimated value of 5 ms. The phenomenological PR dependence of the steady-state MTR may indicate that MT exceeded the direct saturation. Unlike to an idealized CW experiment, the extrapolated value at zero PR is subject to direct effects and not a physically meaningful constant.
-
Complete dissection is the current reference method to quantify muscle and fat tissue on pig carcasses. Magnetic resonance imaging (MRI) is an appropriate nondestructive alternative method that can provide reliable and quantitative information on pig carcass composition without losing the spatial information. We have developed a method to quantify the amount of fat tissue and muscle in gradient echo MR images. ⋯ FOV 4/8, 19 slices, space between slices 2 mm). The image analysis results were compared with dissection results giving a prediction error of the muscle content (mean=2.7 kg) of 88.9 g and of the fat content (mean=2.7 kg) of 115.8 g without correction of the chemical shift effect in the computation of partial volume fat content. The correction scheme improved these results to, respectively, 81.5 and 107.1 g.
-
The aim of this study was to investigate the effect of temporal resolution on the estimation of left ventricular (LV) function by cardiac magnetic resonance (MR) imaging using a steady-state free precession (SSFP) sequence. Left ventricular function was assessed by cine MR imaging using a segmented SSFP sequence in 10 healthy volunteers. Views per segment (VPS) were set at 8 and 20, resulting in high and low true temporal resolution, respectively. ⋯ Imaging with a VPS of 20 yielded a larger ESV and smaller EF than imaging with a VPS of 8 when 40 phases were used. In conclusion, low true temporal resolution causes overestimation of ESV and underestimation of EF. Improvement of apparent temporal resolution mildly reduces but does not eliminate the errors caused by low true temporal resolution.