Statistics in medicine
-
Statistics in medicine · Apr 2003
Robustness and power of analysis of covariance applied to ordinal scaled data as arising in randomized controlled trials.
In clinical trials comparing two treatments, ordinal scales of three, four or five points are often used to assess severity, both prior to and after treatment. Analysis of covariance is an attractive technique, however, the data clearly violate the normality assumption and in the presence of small samples, and large sample theory may not apply. The robustness and power of various versions of parametric analysis of covariance applied to small samples of ordinal scaled data are investigated through computer simulation. ⋯ The hierarchical approach which first tests for homogeneity of regression slopes and then fits separate slopes if there is significant non-homogeneity produced significance levels that exceeded the nominal levels especially when the sample sizes were small. The model which assumes homogeneous regression slopes produced the highest power among competing tests for all of the configurations investigated. The t-test on difference scores also produced good power in the presence of small samples.
-
Statistics in medicine · Apr 2003
Comparative StudySample size estimation for GEE method for comparing slopes in repeated measurements data.
Sample size calculation is an important component at the design stage of clinical trials. Controlled clinical trials often use a repeated measurement design in which individuals are randomly assigned to treatment groups and followed-up for measurements at intervals across a treatment period of fixed duration. ⋯ In this paper we propose to use the generalized estimating equation (GEE) method in comparing the rates of change in repeated measurements and introduce closed form formulae for sample size and power that can be calculated using a scientific calculator. Since the sample size formula is based on asymptotic theory, we investigate the performance of the estimated sample size in practical settings through simulations.
-
Statistics in medicine · Apr 2003
Causal logistic models for non-compliance under randomized treatment with univariate binary response.
We propose a method for estimating the marginal causal log-odds ratio for binary outcomes under treatment non-compliance in placebo-randomized trials. This estimation method is a marginal alternative to the causal logistic approach by Nagelkerke et al. (2000) that conditions on partially unknown compliance (that is, adherence to treatment) status, and also differs from previous approaches that estimate risk differences or ratios in subgroups defined by compliance status. The marginal causal method proposed in this paper is based on an extension of Robins' G-estimation approach for fitting linear or log-linear structural nested models to a logistic model. ⋯ These models differ in the way that compliance is related to potential outcomes, and thus differ in the way that the causal effect is identified. The simulations also show that the proposed marginal causal estimation approach performs well in terms of bias under the different levels of confounding due to non-adherence and under different causal logistic models. We also provide results from the analyses of two data sets further showing how a comparison of the marginal and conditional estimators can help evaluate the magnitude of confounding due to non-adherence.