International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience
-
Int. J. Dev. Neurosci. · Dec 2005
Comparative StudyTotal antioxidant capacity is impaired in different structures from aged rat brain.
Our data support a disproportion between free radicals levels and scavenging systems activity in different cerebral regions of the aging rat. We investigated the total reactive antioxidant potential and reactivity levels, which represent the total antioxidant capacity, in different cerebral regions of the aging rat (cortex, striatum, hippocampus and the cerebellum). In addition, we have determined several oxidative stress parameters, specifically the free radicals levels, the macromolecules damage (lipid peroxidation and carbonyl content), as well as the antioxidant enzymes activities in different cerebral areas from young (2 months-old), mature adult (6 months-old) and old (24 months-old) male Wistar rats. ⋯ The striatum exhibited a significant catalase activity decrease; and glutathione peroxidase activity was diminished in the hippocampus of mature and aged rats. There was a marked decrease of total antioxidant capacity in hippocampus in both reactivity and potential levels, whereas striatum and cerebral cortex displayed a reduction on reactivity assay. We suggest that age-related variations of total antioxidant defenses in brain may predispose structures to oxidative stress-related neurodegenerative disorders.
-
Int. J. Dev. Neurosci. · Dec 2005
Comparative StudyPostnatal development of cholinergic neurons in the mesopontine tegmentum revealed by histochemistry.
Cholinergic neurons in the laterodorsal tegmental nucleus (LDT) and pedunculopontine tegmental nucleus (PPT) play a role in the regulation of several kinds of behavior. Some of them, such as locomotion, motor inhibition or sleep, show dramatic changes at a certain period of postnatal development. To understand the neural substrate for the development of these physiological functions, we studied the development of cholinergic neurons in the LDT and PPT of postnatal and adult rats using histochemical staining of NADPH-diaphorase (NADPH-d) and immunohistochemical staining of choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT). ⋯ The volume of the LDT increased during the second postnatal week. These findings indicate that cholinergic neurons in the LDT develop their cholinergic properties during the second postnatal week and mature functionally thereafter. We discuss these results in light of the several physiological functions regulated by the cholinergic neurons in the mesopontine tegmentum.