International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience
-
Int. J. Dev. Neurosci. · May 2011
ReviewDevelopmental history of the subplate zone, subplate neurons and interstitial white matter neurons: relevance for schizophrenia.
The subplate zone is a transient cytoarchitectonic compartment of the fetal telencephalic wall and contains a population of subplate neurons which are the main neurons of the fetal neocortex and play a key role in normal development of cerebral cortical structure and connectivity. While the subplate zone disappears during the perinatal and early postnatal period, numerous subplate neurons survive and remain embedded in the superficial (gyral) white matter of adolescent and adult brain as so-called interstitial neurons. In both fetal and adult brain, subplate/interstitial neurons belong to two major classes of cortical cells: (a) projection (glutamatergic) neurons and (b) local circuit (GABAergic) interneurons. ⋯ This inhibitory action of GABAergic interstitial neurons is facilitated by their strategic position at the cortical/white matter interface where limbic and modulatory afferent pathways enter the prefrontal cortex. Thus, enlarged population of inhibitory interstitial neurons (even if they represent a minor fraction of total neuron number, as in the cerebral cortex itself) may alter the differential "gating" of limbic and modulatory inputs (as well as other cortical and subcortical inputs) and cause a functional disconnectivity between the prefrontal and limbic cortex in the adolescent brain. In conclusion, fetal subplate neurons and surviving postnatal interstitial neurons are important modulators of cortical functions in both normal and schizophrenic cerebral cortex.