International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience
-
Int. J. Dev. Neurosci. · Oct 2013
ReviewShaping synaptic plasticity: the role of activity-mediated epigenetic regulation on gene transcription.
Learning and memory are basic functions of the brain that allowed human evolution. It is well accepted that during learning and memory formation the dynamic establishment of new active synaptic connections is crucial. Persistent synaptic activation leads to molecular events that include increased release of neurotransmitters, increased expression of receptors on the postsynaptic neuron, thus creating a positive feedback that results in the activation of distinct signaling pathways that temporally and permanently alter specific patterns of gene expression. ⋯ Even less is known regarding the signaling events triggered by synaptic activity that regulate these epigenetic marks. Here we review the current understanding of the molecular mechanisms controlling activity-dependent gene transcription leading synaptic plasticity and memory formation. We describe how Ca(2+) entry through N-methyl-d-aspartate-type glutamate neurotransmitter receptors result in the activation of specific signaling pathways leading to changes in gene expression, giving special emphasis to the recent data pointing out different epigenetic mechanisms (histone acetylation, methylation and phosphorylation as well as DNA methylation and hydroxymethylation) underlying learning and memory.
-
Int. J. Dev. Neurosci. · Oct 2013
HDAC inhibitors dysregulate neural stem cell activity in the postnatal mouse brain.
The mammalian central nervous system (CNS) undergoes significant expansion postnatally, producing astrocytes, oligodendrocytes and inhibitory neurons to modulate the activity of neural circuits. This is coincident in humans with the emergence of pediatric epilepsy, a condition commonly treated with valproate/valproic acid (VPA), a potent inhibitor of histone deacetylases (HDACs). The sequential activity of specific HDACs, however, may be essential for the differentiation of distinct subpopulations of neurons and glia. ⋯ By one month after VPA, OB interneuron genesis was significantly and differentially reduced in both periglomerular and granule neurons. Using neurosphere assays to test if VPA directly regulates NSC activity, we found that short term treatment with VPA in vivo reduced neurosphere numbers and size, a phenotype that was also obtained in neurospheres from control mice treated with VPA and an alternative HDAC inhibitor, Trichostatin A (TSA) at 0 and 3 days in vitro (DIV). Collectively, these data show that clinically used HDAC inhibitors like VPA and TSA can perturb postnatal neurogenesis; and their use should be carefully considered, especially in individuals whose brains are actively undergoing key postnatal time windows of development.