Resuscitation
-
Hypoxic ischaemic brain injury (HIBI) is a major cause of disability after cardiac arrest. HIBI leads to impaired cerebral autoregulation such that adequate cerebral perfusion becomes critically dependent on blood pressure. However, the optimal blood pressure after cardiac arrest remains unclear. Therefore, we conducted a systematic review to investigate the association between blood pressure and neurologic outcome patients after cardiac arrest. ⋯ The included studies suggest improved neurologic outcomes are associated with higher blood pressures in patients after cardiac arrest. This study highlights a need for further research to define the optimal management of blood pressure in this population.
-
Electroencephalogram (EEG) background reactivity is a potentially interesting outcome predictor in comatose patients, especially after cardiac arrest, but recent studies report only fair interrater reliability. Furthermore, there are no definite guidelines for its testing. We therefore investigated the EEG effect of standardized noxious stimuli in comatose patients not reactive to auditory stimuli. ⋯ In this pilot study, bilateral, synchronous nipple pinching seems to be the most efficient method to test nociceptive EEG reactivity in comatose patients. This approach may enhance interrater reliability, but deserves confirmation in larger cohorts.
-
Studies have shown that blended approaches combining e-learning with face-to-face training reduces costs whilst maintaining similar learning outcomes. The preferences in learning approach for healthcare providers to this new style of learning have not been comprehensively studied. The aim of this study is to evaluate the acceptability of blended learning to advanced resuscitation training. ⋯ The e-ALS course was well received by most, but not all participants. The majority felt the e-learning module was beneficial. There was universal agreement that the face-to-face training was invaluable. Individual learning styles of the candidates affected their reaction to the course materials.
-
Dispatch-assisted cardiopulmonary resuscitation (DA-CPR) plays a key role in out-of-hospital cardiac arrests. We sought to measure dispatchers' performances in a criteria-based system in recognizing cardiac arrest and delivering DA-CPR. Our secondary purpose was to identify the factors that hampered dispatchers' identification of cardiac arrests, the factors that prevented them from proposing DA-CPR, and the factors that prevented bystanders from performing CPR. ⋯ This study demonstrates that performances from a criteria-based dispatch system can be similar to those from a medical-priority dispatch system regarding out-of-hospital cardiac arrest (OHCA) time recognition and DA-CPR delivery. Agonal breathing recognition remains the weakest link in this sensitive task in both systems. It is of prime importance that all dispatch centers tend not only to implement DA-CPR but also to have tools to help them reach this objective, as today it should be mandatory to offer this service to the community. In order to improve benchmarking opportunities, we completed previously proposed performance standards as propositions.
-
Comparative Study
A ventilation technique for oxygenation and carbon dioxide elimination in CPR: Continuous insufflation of oxygen at three levels of pressure in a pig model.
Pulmonary ventilation remains an important part of cardiopulmonary resuscitation, affecting gas exchange and haemodynamics. We designed and studied an improved method of ventilation for CPR, constructed specifically to support both gas exchange and haemodynamics. This method uses continuous insufflation of oxygen at three levels of pressure, resulting in tri-level pressure ventilation (TLPV). We hypothesized that TLPV improves gas exchange and haemodynamics compared to manual gold standard ventilation (GSV). ⋯ We conclude that the ventilation strategy with a tri-level pressure cycle performs comparable to an expert, manual ventilator in an automated-CPR swine model.