Upsala journal of medical sciences
-
The rise of antibiotic-resistant bacterial strains, causing intractable infections, has resulted in an increased interest in phage therapy. Phage therapy preceded antibiotic treatment against bacterial infections and involves the use of bacteriophages, bacterial viruses, to fight bacteria. Virulent phages are abundant and have proven to be very effective in vitro, where they in most cases lyse any bacteria within the hour. ⋯ Phages are effective only if enough of them can reach the bacteria and increase in number in situ. Taken together, this entails high demands on resources for the construction of phage libraries and the testing of individual phages. The effectiveness and host range must be characterized, and immunological risks must be assessed for every single phage.
-
The increase in antibiotic resistance and the dearth of novel antibiotics have become a growing concern among policy-makers. A combination of financial, scientific, and regulatory challenges poses barriers to antibiotic innovation. However, each of these three challenges provides an opportunity to develop pathways for new business models to bring novel antibiotics to market. ⋯ Instead regulatory agencies could encourage development of companion diagnostics, test antibiotic combinations in parallel, and pool and make transparent clinical trial data to lower R&D costs. A tax on non-human use of antibiotics might also create a disincentive for non-therapeutic use of these drugs. Finally, the new business model for antibiotic innovation should apply the 3Rs strategy for encouraging collaborative approaches to R&D in innovating novel antibiotics: sharing resources, risks, and rewards.
-
Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. ⋯ Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.
-
Antibiotics are the medical wonder of our age, but an increasing frequency of resistance among key pathogens is rendering them less effective. If this trend continues the consequences for cancer patients, organ transplant patients, and indeed the general community could be disastrous. The problem is complex, involving abuse and overuse of antibiotics (selecting for an increasing frequency of resistant bacteria), together with a lack of investment in discovery and development (resulting in an almost dry drug development pipeline). ⋯ Here we outline the complex process involved in taking a potential novel antibiotic from the initial discovery of a hit molecule, through lead and candidate drug development, up to its entry into phase I clinical trials. The stringent criteria that a successful drug must meet, balancing high efficacy in vivo against a broad spectrum of pathogens, with minimal liabilities against human targets, explain why even with sufficient investment this process is prone to a high failure rate. This emphasizes the need to create a well-funded antibiotic discovery and development pipeline that can sustain the continuous delivery of novel candidate drugs into clinical trials, to ensure the maintenance of the advanced medical procedures we currently take for granted.
-
Antimicrobial susceptibility testing with phenotypic methods requires breakpoints, i.e. a minimum inhibitory concentration (MIC) categorizing micro-organisms into susceptible, intermediately susceptible, and resistant for the relevant antimicrobial agent. Determinations of breakpoints require tools such as the understanding of dosing, MIC distributions of organisms without resistance mechanisms, pharmacokinetics, pharmacodynamics, and of clinical outcome in defined clinical situations. ⋯ Together with the European Medicines Agency (EMA), EUCAST determines breakpoints for existing and new antibacterial and antifungal agents. Moreover, EUCAST has developed a disk diffusion antimicrobial susceptibility testing method which is now, together with the new European breakpoints, being implemented in many countries both inside and outside Europe.