Upsala journal of medical sciences
-
Cancer-associated fibroblasts (CAFs) are a heterogeneous cell population recognized as a key component of the tumour microenvironment (TME). Cancer-associated fibroblasts are known to play an important role in maintaining and remodelling the extracellular matrix (ECM) in the tumour stroma, supporting cancer progression and inhibiting the immune system's response against cancer cells. This review aims to summarize the immunomodulatory roles of CAFs, particularly focussing on their T-cell suppressive effects. ⋯ In addition, a number of recent studies have confirmed CAF-mediated direct suppressive effects on T-cell anticancer capacity through ECM remodelling, promoting the expression of immune checkpoints, cytokine secretion and the release of extracellular vesicles. The consequential impact of CAFs on T-cell function is then reflected in affecting T-cell proliferation and apoptosis, migration and infiltration, differentiation and exhaustion. Emerging evidence highlights the existence of specific CAF subsets with distinct capabilities to modulate the immune landscape of TME in various cancers, suggesting the possibility of their exploitation as possible prognostic biomarkers and therapeutic targets.
-
Since various imaging modalities have been developed, cancer metastasis can be detected from an early stage. However, limitations still exist, especially in terms of spatial resolution. Tissue-clearing technology has emerged as a new imaging modality in cancer research, which has been developed and utilized for a long time mainly in neuroscience field. ⋯ On top of that, 3D images of cancer metastasis of whole mouse organs make it easy to understand their characteristics. Recently, further applications of tissue clearing methods were reported in combination with reporter systems, labeling, and machine learning. In this review, we would like to provide an overview of this technique and current applications in cancer research and discuss their potentials and limitations.
-
Review Historical Article
From early methods for DNA diagnostics to genomes and epigenomes at high resolution during four decades - a personal perspective.
In the 1980s, my research career begun with microbial DNA diagnostics at Orion Pharmaceutica in Helsinki, Finland, where I was part of an innovative team that developed novel methods based on the polymerase chain reaction (PCR) and the biotin-avidin interaction. One of our key achievements during this time was the invention of the solid-phase minisequencing method for genotyping single nucleotide polymorphisms (SNPs). In the 1990s, I shifted focus to human genetics, investigating mutations of the 'Finnish disease heritage'. ⋯ I continued as Director of the SNP&SEQ Technology Platform, which expanded rapidly during the 2010s, and became part of Science for Life Laboratory in 2013. Today (in 2024), the SNP&SEQ Technology Platform is one of the largest units of the Swedish National Genomics Infrastructure hosted by SciLifeLab. The present article provides a personal perspective on nearly four decades of research, highlighting projects and methods I found particularly exciting or important.
-
While Coronavirus Disease in 2019 (COVID-19) may no longer be classified as a global public health emergency, it still poses a significant risk at least due to its association with thrombotic events. This study aims to reaffirm our previous hypothesis that COVID-19 is fundamentally a thrombotic disease. To accomplish this, we have undertaken an extensive literature review focused on assessing the comprehensive impact of COVID-19 on the entire hemostatic system. ⋯ To clarify the pathogenesis underlying these hemostatic disorders in COVID-19, we also examined published data, tracing the reaction process of relevant proteins and cells, from ACE2-dependent viral invasion, through induced tissue inflammation, endothelial injury, and innate immune responses, to occurrence of thrombotic events. We therefrom understand that COVID-19 should no longer be viewed as a thrombotic disease solely based on abnormalities in fibrin clot formation and proteolysis. Instead, it should be regarded as a thromboinflammatory disorder, incorporating both classical elements of cellular inflammation and their intricate interactions with the specific coagulopathy.
-
Mutations in the TP53 tumor suppressor gene occur with high prevalence in a wide range of human tumors. A significant fraction of these mutations (around 10%) are nonsense mutations, creating a premature termination codon (PTC) that leads to the expression of truncated inactive p53 protein. ⋯ Full-length p53 protein generated by translational readthrough retains the capacity to transactivate p53 target genes and trigger tumor cell death. These findings raise hopes for efficient therapy of TP53 nonsense mutant tumors in the future.