Virus research
-
Recent reports have shown that small and big felines could be infected by SARS-CoV-2, while other animals, like swines and mice, are apparently not susceptible to this infection. These findings raise the question of the role of cell factors associated with early stages of the viral infection in host selectivity. The cellular receptor for SARS-CoV-2 is the Angiotensin Converting Enzyme (ACE2). ⋯ On the other hand, TMPRSS2 and GRP78 are proteins with high homology in all the evaluated hosts. Thus, these proteins do not seem to play a role in host selectivity, suggesting that other factors may play a role in the non-permissivity in some of these hosts. These proteins represent however interesting cell targets that could be explored in order to control the virus replication in humans and in the intermediary hosts.
-
To investigate the clinical significance, viral shedding duration and viral load dynamics of positive fecal SARS-CoV-2 signals in COVID-19. ⋯ SARS-CoV-2 RNA in stool specimens was associated with a milder condition and better recovery of chest CT results while the median duration of SARS-CoV-2 RNA persistence was significantly longer in fecal samples than in oropharyngeal swabs. The fecal viral load easily reached a high level and rebounded even though respiratory signals became negative.
-
Susceptibility to severe viral infections was reported to be associated with genetic variants in immune response genes using case reports and GWAS studies. SARS-CoV-2 is an emergent viral disease that caused millions of COVID-19 cases all over the world. Around 15 % of cases are severe and some of them are accompanied by dysregulated immune system and cytokine storm. There is increasing evidence that severe manifestations of COVID-19 might be attributed to human genetic variants in genes related to immune deficiency and or inflammasome activation (cytokine storm). ⋯ This compilation represents a list of candidate genes that are likely to aid in explaining severe COVID-19 which are worthy of inclusion in gene panels and during meta-analysis of different variants in host genetics studies of COVID-19. In addition, we provide several hypotheses for severe COVID-19 and possible therapeutic targets.
-
The recent outbreak of the betacoronavirus SARS-CoV-2 has become a significant concern to public health care worldwide. As of August 19, 2020, more than 22,140,472 people are infected, and over 781,135 people have died due to this deadly virus. In the USA alone, over 5,482,602 people are currently infected, and more than 171,823 people have died. ⋯ Previously, several methods to develop a vaccine against SARS-CoV or MERS-CoV have been tried with limited success. Since SARS-CoV-2 uses the spike (S) protein for entry to the host cell, it is one of the most preferred targets for making vaccines or therapeutics against SARS-CoV-2. In this review, we have summarised the characteristics of the S protein, as well as the different approaches being used for the development of vaccines and/or therapeutics based on the S protein.
-
Meta Analysis
Effect of remdesivir on patients with COVID-19: A network meta-analysis of randomized control trials.
Several randomized controlled trials (RCTs) were conducted to investigate the effect of remdesivir for patients with COVID-19, but their results were conflicting. Thus, we conducted a network meta-analysis comparing the rate of clinical improvement among patients with COVID-19 who received 5-day course of remdesivir versus 10-day course of remdesivir versus standard care. ⋯ In addition, the rate of clinical improvement was significantly higher in the 5-day remdesivir group compared to the 10-day remdesivir group (OR [95% confidence interval [CI]] =1.37 [1.01-1.85], P =0.041). Our analysis demonstrated that the use of remdesivir for patients with COVID-19 was associated with the significantly higher clinical improvement rate compared with standard care alone.