Virus research
-
The first incidence of COVID-19 was reported in the Wuhan city of Hubei province in China in late December 2019. Because of failure in timely closing of borders of the affected region, COVID-19 spread across like a wildfire through air travel initiating a pandemic. It is a serious lower respiratory track viral infection caused by highly contagious, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). ⋯ Vitamin D is a key regulator of the renin-angiotensin system that is exploited by SARS-CoV-2 for entry into the host cells. Further, vitamin D modulates multiple mechanisms of the immune system to contain the virus that includes dampening the entry and replication of SARS-CoV-2, reduces concentration of pro-inflammatory cytokines and increases levels of anti-inflammatory cytokines, enhances the production of natural antimicrobial peptide and activates defensive cells such as macrophages that could destroy SARS-CoV-2. Thus, this article provides the urgency of needed evidences through large population based randomized controlled trials and ecological studies to evaluate the potential role of vitamin D in COVID-19.
-
Susceptibility to severe viral infections was reported to be associated with genetic variants in immune response genes using case reports and GWAS studies. SARS-CoV-2 is an emergent viral disease that caused millions of COVID-19 cases all over the world. Around 15 % of cases are severe and some of them are accompanied by dysregulated immune system and cytokine storm. There is increasing evidence that severe manifestations of COVID-19 might be attributed to human genetic variants in genes related to immune deficiency and or inflammasome activation (cytokine storm). ⋯ This compilation represents a list of candidate genes that are likely to aid in explaining severe COVID-19 which are worthy of inclusion in gene panels and during meta-analysis of different variants in host genetics studies of COVID-19. In addition, we provide several hypotheses for severe COVID-19 and possible therapeutic targets.
-
The recent outbreak of the betacoronavirus SARS-CoV-2 has become a significant concern to public health care worldwide. As of August 19, 2020, more than 22,140,472 people are infected, and over 781,135 people have died due to this deadly virus. In the USA alone, over 5,482,602 people are currently infected, and more than 171,823 people have died. ⋯ Previously, several methods to develop a vaccine against SARS-CoV or MERS-CoV have been tried with limited success. Since SARS-CoV-2 uses the spike (S) protein for entry to the host cell, it is one of the most preferred targets for making vaccines or therapeutics against SARS-CoV-2. In this review, we have summarised the characteristics of the S protein, as well as the different approaches being used for the development of vaccines and/or therapeutics based on the S protein.
-
The current COVID-19 pandemic has urged the scientific community internationally to find answers in terms of therapeutics and vaccines to control SARS-CoV-2. Published investigations mostly on SARS-CoV and to some extent on MERS has taught lessons on vaccination strategies to this novel coronavirus. This is attributed to the fact that SARS-CoV-2 uses the same receptor as SARS-CoV on the host cell i.e. human Angiotensin Converting Enzyme 2 (hACE2) and is approximately 79% similar genetically to SARS-CoV. ⋯ Various platforms for vaccine development are available namely: virus vectored vaccines, protein subunit vaccines, genetic vaccines, and monoclonal antibodies for passive immunization which are under evaluations for SARS-CoV-2, with each having discrete benefits and hindrances. The COVID-19 pandemic which probably is the most devastating one in the last 100 years after Spanish flu mandates the speedy evaluation of the multiple approaches for competence to elicit protective immunity and safety to curtail unwanted immune-potentiation which plays an important role in the pathogenesis of this virus. This review is aimed at providing an overview of the efforts dedicated to an effective vaccine for this novel coronavirus which has crippled the world in terms of economy, human health and life.
-
The fight against the novel coronavirus pneumonia (namely COVID-19) that seriously harms human health is a common task for all mankind. Currently, development of drugs against the novel coronavirus (namely SARS-CoV-2) is quite urgent. Chinese medical workers and scientific researchers have found some drugs to play potential therapeutic effects on COVID-19 at the cellular level or in preliminary clinical trials. ⋯ The adoption of these drugs without further testing must be careful. The relevant articles, news, and government reports published on the official and Preprint websites, PubMed and China National Knowledge Infrastructure (CNKI) databases from December 2019 to April 2020 were searched and manually filtered. The general pharmacological characteristics, indications, adverse reactions, general usage, and especially current status of the treatment of COVID-19 of those potentially effective drugs, including chemical drugs, traditional Chinese medicines (TCMs), and biological products in China were summarized in this review to guide reasonable medication and the development of specific drugs for the treatment of COVID-19.