Journal of applied physiology
-
Multicenter Study Comparative Study
Noninvasive determination of exercise-induced hydrodgen ion threshold through direct optical measurement.
The intensity of exercise above which oxygen uptake (Vo2) does not account for all of the required energy to perform work has been associated with lactate accumulation in the blood (lactate threshold, LT) and elevated carbon dioxide output (gas exchange threshold). An increase in hydrogen ion concentration ([H+]) is approximately concurrent with elevation of blood lactate and CO2 output during exercise. Near-infrared spectra (NIRS) and invasive interstitial fluid pH (pHm) were measured in the flexor digitorum profundus during handgrip exercise to produce a mathematical model relating the two measures with an estimated error of 0.035 pH units. ⋯ LT was significantly different from both the gas exchange threshold (Delta = 0.27 +/- 0.29 l/min) and H+ threshold (Delta = 0.29 +/- 0.23 l/min), but the gas exchange threshold was not significantly different from the H+ threshold (Delta = 0.00 +/- 0.38 l/min). The H+ threshold was strongly correlated with LT (R2 = 0.95) and the gas exchange threshold (R2 = 0.85). This initial study demonstrates the feasibility of noninvasive pHm estimations, the determination of H+ threshold, and the relationship between H+ and classical metabolic thresholds during incremental exercise.