Journal of applied physiology
-
Randomized Controlled Trial
Heart rate variability and spontaneous baroreflex sequences in supine healthy volunteers subjected to nasal positive airway pressure.
To determine the dynamic effects of short-term nasal positive airway pressure (nPAP) on cardiovascular autonomic control, continuous recordings of noninvasively obtained hemodynamic measurements and heart rate variability (HRV) were obtained in 10 healthy subjects during frequency-controlled breathing (between 0.20 and 0.24 Hz) in supine posture under different pressures of nPAP ranging from 3 to 20 cmH(2)O. HRV was assessed using spectral analysis of the R-R interval. The slope of the regression line between spontaneous systolic blood pressure and pulse interval changes was taken as an index of the sensitivity of arterial baroreflex modulation of heart rate (sequence method). ⋯ When the power of low frequency and high frequency was calculated in normalized units, a diminished high frequency and an increased low-to-high frequency ratio were observed (P < 0.05). Compared with low levels of nPAP, pressure levels of >10 cmH(2)O were associated with a significant decline in the mean slope of spontaneous baroreceptor sequences (P < 0.04). These findings indicate that short-term administration of nPAP in normal subjects exerts significant alterations in R-R interval variability and spontaneous baroreflex modulation of heart rate.
-
Randomized Controlled Trial Clinical Trial
Noninvasive assessment of sympathetic vasoconstriction in human and rodent skeletal muscle using near-infrared spectroscopy and Doppler ultrasound.
The precise role of the sympathetic nervous system in the regulation of skeletal muscle blood flow during exercise has been challenging to define in humans, partly because of the limited techniques available for measuring blood flow in active muscle. Recent studies using near-infrared (NIR) spectroscopy to measure changes in tissue oxygenation have provided an alternative method to evaluate vasomotor responses in exercising muscle, but this approach has not been fully validated. In this study, we tested the hypothesis that sympathetic activation would evoke parallel changes in tissue oxygenation and blood flow in resting and exercising muscle. ⋯ Similarly, in resting hindlimb of rats, electrical stimulation of sympathetic nerves produced graded decreases in tissue oxygenation and blood flow velocity that were highly correlated (r = 0.93, P < 0.0001). During rhythmic muscle contraction, the decreases in tissue oxygenation and blood flow evoked by sympathetic activation were significantly attenuated (P < 0.05 vs. rest) but remained highly correlated in both humans (r = 0.80, P < 0.006) and rats (r = 0.92, P < 0.0001). These data indicate that, during steady-state metabolic conditions, changes in tissue oxygenation can be used to reliably assess sympathetic vasoconstriction in both resting and exercising skeletal muscle.
-
Randomized Controlled Trial Clinical Trial
Integrated analysis of protein and glucose metabolism during surgery: effects of anesthesia.
The aim of this study was to assess dynamic changes in protein and glucose metabolism during surgery. Twelve patients undergoing colorectal surgery received either intravenous propofol anesthesia (n = 6) or inhalational anesthesia with desflurane (n = 6). Pre- and intraoperative protein and glucose kinetics were analyzed by an isotope dilution technique using L-[1-(13)C]leucine and [6,6-(2)H(2)]glucose. ⋯ Intraoperative plasma cortisol and glucose concentrations increased (P < 0.05), whereas plasma concentrations of lactate, free fatty acids, insulin, and glucagon did not change. Surgery causes a depression of whole body protein and glucose metabolism, independent of the anesthetic technique. There is a correlation between perioperative glucose production and protein breakdown.
-
Randomized Controlled Trial Clinical Trial
Effects of a 12-wk resistance exercise program on skeletal muscle strength in children with burn injuries.
The posttraumatic response to burn injury leads to marked and prolonged skeletal muscle catabolism and weakness, which persist despite standard rehabilitation programs of occupational and physical therapy. We investigated whether a resistance exercise program would attenuate muscle loss and weakness that is typically found in children with thermal injury. We assessed the changes in leg muscle strength and lean body mass in severely burned children with >40% total body surface area burned. ⋯ Leg muscle strength was assessed before and after the 12-wk rehabilitation or training program at an isokinetic speed of 150 degrees /s. Lean body mass was assessed using dual-energy X-ray absorptiometry. We found that the participation in a resistance exercise program results in a significant improvement in muscle strength, power, and lean body mass relative to a standard rehabilitation program without exercise.
-
Randomized Controlled Trial Clinical Trial
An oral essential amino acid-carbohydrate supplement enhances muscle protein anabolism after resistance exercise.
This study was designed to determine the response of muscle protein to the bolus ingestion of a drink containing essential amino acids and carbohydrate after resistance exercise. Six subjects (3 men, 3 women) randomly consumed a treatment drink (6 g essential amino acids, 35 g sucrose) or a flavored placebo drink 1 h or 3 h after a bout of resistance exercise on two separate occasions. We used a three-compartment model for determination of leg muscle protein kinetics. ⋯ The response to the amino acid-carbohydrate drink produced similar anabolic responses at 1 and 3 h. Muscle protein breakdown did not change in response to the drink. We conclude that essential amino acids with carbohydrates stimulate muscle protein anabolism by increasing muscle protein synthesis when ingested 1 or 3 h after resistance exercise.