Journal of applied physiology
-
In recent months, the coronavirus disease 2019 (COVID-19) pandemic has sent many countries into crisis. Studies have shown that this virus causes worse outcomes and a higher mortality in men than in women. ⋯ Angiotensin-converting enzyme 2 (ACE2) acts as the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19. The expression of ACE2 is influenced by sex hormones; therefore, we discuss in this article that this could be one of the reasons why COVID-19 is more prevalent in men than in women.
-
In vitro and in vivo anesthetized studies led to the conclusion that "deficiencies in one neuromodulator are immediately compensated by the action of other neuromodulators," which suggests an interdependence among neuromodulators. This concept was the focus of the 2018 Julius H. Comroe Lecture to the American Physiological Society in which I summarized our published studies testing the hypothesis that if modulatory interdependence was robust, breathing would not decrease during dialysis of antagonists to G protein-coupled excitatory receptors or agonists to inhibitory receptors into the ventral respiratory column (VRC) or the hypoglossal motor nuclei (HMN). ⋯ Bilateral dialysis of receptor antagonists or agonist in the VRC increased breathing, which does not support the concept that unchanged breathing with unilateral dialyses was due to contralateral compensation. In contrast, in the HMN neither unilateral nor bilateral dialysis of the excitatory receptor antagonists altered breathing, but unilateral dialysis of the opioid receptor agonist decreased breathing. We conclude: 1) there is site-dependent interdependence of neuromodulators during physiologic conditions, and 2) attributing physiologic effects to a specific receptor perturbation is complicated by local compensatory mechanisms.
-
Traditional monitoring technologies fail to provide accurate or early indications of hypovolemia-mediated extremis because physiological systems (as measured by vital signs) effectively compensate until circulatory failure occurs. Hypovolemia is the most life-threatening physiological condition associated with circulatory shock in hemorrhage or sepsis, and it impairs one's ability to sustain physical exertion during heat stress. ⋯ Extensive experimental evidence employing acute reductions in central blood volume (using lower-body negative pressure, blood withdrawal, heat stress, dehydration) demonstrate that compensatory reserve provides the best indicator for early and accurate assessment for compromises in blood pressure, tissue perfusion, and oxygenation in resting human subjects. Engineering challenges exist for the development of a ruggedized wearable system that can measure signals from multiple sites, improve signal-to-noise ratios, be customized for use in austere conditions (e.g., battlefield, patient transport), and be worn during strenuous physical activity.
-
Acute respiratory distress syndrome (ARDS) remains a serious clinical problem with the main treatment being supportive in the form of mechanical ventilation. However, mechanical ventilation can be a double-edged sword: if set improperly, it can exacerbate the tissue damage caused by ARDS; this is known as ventilator-induced lung injury (VILI). To minimize VILI, we must understand the pathophysiologic mechanisms of tissue damage at the alveolar level. ⋯ Our review suggests that the current protective ventilation strategy, known as the "open lung strategy," would be the optimal lung-protective approach. However, the viscoelastic behavior of dynamic alveolar inflation and deflation has not yet been incorporated into protective mechanical ventilation strategies. Using our knowledge of dynamic alveolar mechanics (i.e., the dynamic change in alveolar and alveolar duct size and shape during tidal ventilation) to modify the MBP so as to minimize VILI will reduce the morbidity and mortality associated with ARDS.
-
This article briefly reviews the fidelity of ground-based methods used to simulate human existence in weightlessness (spaceflight). These methods include horizontal bed rest (BR), head-down tilt bed rest (HDT), head-out water immersion (WI), and head-out dry immersion (DI; immersion with an impermeable elastic cloth barrier between subject and water). Among these, HDT has become by far the most commonly used method, especially for longer studies. ⋯ Also, although weightlessness is the salient feature of spaceflight, several ancillary factors of space travel complicate Earth-based simulation. In spite of these discrepancies and complications, the analogs duplicate many responses to 0 G reasonably well. As we learn more about responses to microgravity and spaceflight, investigators will continue to fine-tune simulation methods to optimize accuracy and applicability.