Journal of applied physiology
-
Recent studies indicate that a focal, limited, inflammatory response can be safely elicited after direct bronchial instillation of small doses of endotoxin into a single lung segment. Because the radiotracer [18F]fluorodeoxyglucose ([18F]FDG) is taken up at accelerated rates within inflamed tissues, we hypothesized that we could detect and quantify this regional inflammatory response with positron emission tomography (PET). We imaged 18 normal volunteers in a dose-escalation study with 3 endotoxin dosing groups (n = 6 in each group): 1 ng/kg, 2 ng/kg, and 4 ng/kg. ⋯ In vitro [3H]DG uptake in BAL neutrophils in the 4 ng/kg dose group (but not in the 2 ng/kg group) was statistically greater than in peripheral blood neutrophils obtained before endotoxin instillation. The rate of [18F]FDG uptake was greatest in the 4 ng/kg group, with a consistent, statistically significant increase in the rate of uptake after endotoxin instillation compared with baseline. We conclude that the inflammatory response to low-dose endotoxin in a single lung segment can be visualized and quantified by imaging with FDG-PET.
-
Editorial Comment Comparative Study
Possible new mechanism underlying hypertonic saline therapy for cerebral edema.
-
Comment Letter Comparative Study
What can be concluded regarding water versus sports drinks from the Vrijens-Reher experiments?
-
Comparative Study
Dual-wavelength phosphorimetry for determination of cortical and subcortical microvascular oxygenation in rat kidney.
This study presents a dual-wavelength phosphorimeter developed to measure microvascular PO2 (microPO2) in different depths in tissue and demonstrates its use in rat kidney. The used phosphorescent dye is Oxyphor G2 with excitation bands at 440 and 632 nm. The broad spectral gap between the excitation bands combined with a relatively low light absorption of 632 nm light by tissue results in a marked difference in penetration depths of both excitation wavelengths. ⋯ It can be concluded that oxygen-dependent quenching of phosphorescence of Oxyphor G2 allows quantitative measurement of microPO2 noninvasively in two different depths in vivo. Oxygen levels measured by this technique in the rat renal cortex and outer medulla are consistent with previously published values detected by Clark-type oxygen electrodes. Dual-wavelength phosphorimetry is excellently suited for monitoring microPO2 changes in two different anatomical layers under pathophysiological conditions with the characteristics of providing oxygen histograms from two depths and having a penetration depth of several millimeters.