Journal of applied physiology
-
Chronic obstructive pulmonary disease (COPD) is a debilitating disease caused by parenchymal damage and irreversible airflow limitation. In addition to lung dysfunction, patients with COPD develop weight loss, malnutrition, poor exercise performance, and skeletal muscle atrophy. The latter has been attributed to an imbalance between muscle protein synthesis and protein degradation. ⋯ Pilot experiments on vastus lateralis muscle samples suggest that the autophagy-lysosome system is induced in COPD patients compared with control subjects. In this review, we summarize recent progress related to molecular structure, regulation, and roles of the autophagy-lysosome pathway in normal and diseased skeletal muscles. We also speculate about regulation and functional importance of this system in skeletal muscle dysfunction in COPD patients.
-
This review provides a summary of pulmonary functional imaging approaches for determining pulmonary ventilation, with a specific focus on multi-detector x-ray computed tomography and magnetic resonance imaging (MRI). We provide the important functional definitions of pulmonary ventilation typically used in medicine and physiology and discuss the fact that some of the imaging literature describes gas distribution abnormalities in pulmonary disease that may or may not be related to the physiological definition or clinical interpretation of ventilation. ⋯ Current and emerging imaging research methods are described, including their strengths and the challenges that remain to translate these methods to more wide-spread research and clinical use. We also examine how computed tomography and MRI might be used in the future to gain more insight into gas distribution and ventilation abnormalities in pulmonary disease.
-
Mechanisms linking obesity with upper airway dysfunction in obstructive sleep apnea are reviewed. Obstructive sleep apnea is due to alterations in upper airway anatomy and neuromuscular control. Upper airway structural alterations in obesity are related to adipose deposition around the pharynx, which can increase its collapsibility or critical pressure (P(crit)). ⋯ In contrast, neural responses to upper airway obstruction can mitigate these mechanical loads and restore pharyngeal patency during sleep. Current evidence suggests that these responses can improve with weight loss. Improvements in these neural responses with weight loss may be related to a decline in systemic and local pharyngeal concentrations of specific inflammatory mediators with somnogenic effects.
-
Editorial Review
Mechanisms of action of acetazolamide in the prophylaxis and treatment of acute mountain sickness.
Acetazolamide, a potent carbonic anhydrase (CA) inhibitor, is the most commonly used and best-studied agent for the amelioration of acute mountain sickness (AMS). The actual mechanisms by which acetazolamide reduces symptoms of AMS, however, remain unclear. Traditionally, acetazolamide's efficacy has been attributed to inhibition of CA in the kidneys, resulting in bicarbonaturia and metabolic acidosis. ⋯ Studies performed on both animals and humans, however, have shown that this explanation is unsatisfactory and that the efficacy of acetazolamide in the context of AMS is likely due to a multitude of effects. This review summarizes the known systemic effects of acetazolamide and incorporates them into a model encompassing several factors that are likely to play a key role in the drug's efficacy. Such factors include not only metabolic acidosis resulting from renal CA inhibition but also improvements in ventilation from tissue respiratory acidosis, improvements in sleep quality from carotid body CA inhibition, and effects of diuresis.
-
Review Historical Article
Reflexes from the lungs and airways: historical perspective.
Historical aspects of respiratory reflexes from the lungs and airways are reviewed, up until about 10 yr ago. For most of the 19th century, the possible reflex inputs into the "respiratory center," the position of which had been identified, were very speculative. There was little concept of reflex control of the pattern of breathing. ⋯ Still later, it was established that rapidly adapting receptors were, at least in part, responsible for cough. In 1954, Paintal began his study of C-fiber receptors (J receptors), work greatly extended by the Coleridges. Since approximately 10 yr ago, when the field of this review stops, there has been an explosion of research on lung and airway receptors, many aspects of which are dealt with in other papers in this series.