Journal of applied physiology
-
Randomized Controlled Trial
Effects of breaking up prolonged sitting on skeletal muscle gene expression.
Breaking up prolonged sitting has been beneficially associated with cardiometabolic risk markers in both observational and intervention studies. We aimed to define the acute transcriptional events induced in skeletal muscle by breaks in sedentary time. Overweight/obese adults participated in a randomized three-period, three-treatment crossover trial in an acute setting. ⋯ Activity bouts also altered expression of 10 genes involved in carbohydrate metabolism, including increased expression of dynein light chain, which may regulate translocation of the GLUT-4 glucose transporter. In addition, breaking up sedentary time reversed the effects of chronic inactivity on expression of some specific genes. This study provides insight into the muscle regulatory systems and molecular processes underlying the physiological benefits induced by interrupting prolonged sitting.
-
Randomized Controlled Trial
Exercise intensity typical of mountain climbing does not exacerbate acute mountain sickness in normobaric hypoxia.
Physical exertion is thought to exacerbate acute mountain sickness (AMS). In this prospective, randomized, crossover trial, we investigated whether moderate exercise worsens AMS in normobaric hypoxia (12% oxygen, equivalent to 4,500 m). Sixteen subjects were exposed to altitude twice: once with exercise [3 × 45 min within the first 4 h on a bicycle ergometer at 50% of their altitude-specific maximal workload (maximal oxygen uptake)], and once without. ⋯ After exercise, the increase in ventilation persisted for several hours and was associated with similar levels of capillary and cerebral oxygenation at the exercise and rest day. We conclude that moderate exercise at ~50% maximal oxygen uptake does not increase AMS in normobaric hypoxia. These data do not exclude that considerably higher exercise intensities exacerbate AMS.
-
Randomized Controlled Trial
Dietary nitrate improves muscle but not cerebral oxygenation status during exercise in hypoxia.
Exercise tolerance is impaired in hypoxia, and it has recently been shown that dietary nitrate supplementation can reduce the oxygen (O(2)) cost of muscle contractions. Therefore, we investigated the effect of dietary nitrate supplementation on arterial, muscle, and cerebral oxygenation status, symptoms of acute mountain sickness (AMS), and exercise tolerance at simulated 5,000 m altitude. Fifteen young, healthy volunteers participated in three experimental sessions according to a crossover study design. ⋯ Hypoxia reduced time to exhaustion in EX(max) by 36% (P < 0.05), but this ergolytic effect was partly negated by BR (+5%, P < 0.05). Short-term dietary nitrate supplementation improves arterial and muscle oxygenation status but not cerebral oxygenation status during exercise in severe hypoxia. This is associated with improved exercise tolerance against the background of a similar incidence of AMS.
-
Randomized Controlled Trial
A somatostatin analog improves tilt table tolerance by decreasing splanchnic vascular conductance.
Splanchnic hemodynamics and tilt table tolerance were assessed after an infusion of placebo or octreotide acetate, a somatostatin analog whose vascular effects are largely confined to the splanchnic circulation. We hypothesized that reductions in splanchnic blood flow (SpBF) and splanchnic vascular conductance (SpVC) would be related to improvements in tilt table tolerance. In randomized, double-blind, crossover trials, hemodynamic variables were collected in 14 women and 16 men during baseline, 70° head-up tilt (HUT), and recovery. ⋯ A significant relationship existed between change (Δ) in SpBF (placebo-octreotide) and Δtilt time in women (Δtilt time = 2.5-0.0083 ΔSpBF, P < 0.01), but not men (Δtilt time = 3.41-0.0008 ΔSpBF, P = 0.59). In conclusion, administration of octreotide acetate improved tilt table tolerance, which was associated with a decrease in SpVC. In women, but not men, the magnitude of reduction in SpBF was positively associated with improvements in tilt tolerance.
-
Randomized Controlled Trial Comparative Study
Pulsatile flow during cardiopulmonary bypass preserves postoperative microcirculatory perfusion irrespective of systemic hemodynamics.
The onset of nonpulsatile cardiopulmonary bypass is known to deteriorate microcirculatory perfusion, but it has never been investigated whether this may be prevented by restoration of pulsatility during extracorporeal circulation. We therefore investigated the distinct effects of nonpulsatile and pulsatile flow on microcirculatory perfusion during on-pump cardiac surgery. Patients undergoing coronary artery bypass graft surgery were randomized into a nonpulsatile (n = 17) or pulsatile (n = 16) cardiopulmonary bypass group. ⋯ Pulsatile flow was not associated with augmentation of free hemoglobin production and was paralleled by improved oxygen consumption from 70 ± 14 to 82 ± 16 ml·min(-1)·m(-2) (P = 0.01) at the end of aortic cross-clamping. In conclusion, pulsatile cardiopulmonary bypass preserves microcirculatory perfusion throughout the early postoperative period, irrespective of systemic hemodynamics. This observation is paralleled by an increase in oxygen consumption during pulsatile flow, which may hint toward decreased microcirculatory heterogeneity during extracorporeal circulation and preservation of microcirculatory perfusion throughout the perioperative period.