Anaesthesia and intensive care
-
The oxygen concentration (FiO2) and arterial oxygen tension (PaO2) delivered in patients undergoing major surgery is poorly understood. We aimed to assess current practice with regard to the delivered FiO2 and the resulting PaO2 in patients undergoing major surgery. We performed a retrospective cohort study in a tertiary hospital. ⋯ Hyperoxaemia occurred in 82%, 73% and 54% of participants on the first and second intraoperative and postoperative ABGs respectively. A PaO2 of >200 mmHg occurred in 64%, 41% and 21% of these blood gases, respectively. In an Australian tertiary hospital, a liberal approach to FiO2 and PaO2 was most common and resulted in a high incidence of perioperative hyperoxaemia.
-
Anaesth Intensive Care · May 2020
Positive nasal Staphylococcus aureus polymerase chain reaction assay is not sensitive in predicting concurrent or subsequent Staphylococcus aureus infection in critically ill patients.
Staphylococcal infection is associated with significant morbidity and mortality in critically ill patients. Using data from 16,681 patients who had a nasal Staphylococcus aureus polymerase chain reaction (PCR) assay on admission to the intensive care unit (ICU) of Royal Perth Hospital between March 2006 and September 2016, this retrospective cohort study assessed whether nasal S. aureus colonisation on admission to an ICU was predictive of concurrent or subsequent S. aureus infections. Culture-proven S. aureus infections were identified using the hospital microbiology database. ⋯ The sensitivity and specificity for the MRSA PCR assay in predicting concurrent or subsequent MRSA infection were 72.7% (95% confidence intervals (CI) 63.4%-80.8%) and 97.0% (95% CI 96.8%-97.3%), respectively. The sensitivity and specificity for the MSSA PCR assay in predicting concurrent or subsequent MSSA infection were 3.3% (95% CI 1.1%-7.6%) and 99.1% (95% CI 98.9%-99.2%), respectively. Both nasal MRSA and MSSA PCR assays had a high specificity and negative predictive value in predicting MRSA and MSSA infections, respectively, suggesting that in centres without endemic S. aureus infections, a negative nasal MRSA or MSSA PCR assay may be useful to reduce unnecessary empirical antibiotic therapy against S. aureus.
-
Anaesth Intensive Care · May 2020
ReviewNeuroimmune mechanisms of pain: Basic science and potential therapeutic modulators.
This narrative review aims to describe the role of peripheral and central immune responses to tissue and nerve damage in animal models, and to discuss the use of immunomodulatory agents in clinical practice and their perioperative implications. Animal models of pain have demonstrated that nerve injury activates immune signalling pathways that drive aberrant sensory processes, resulting in neuropathic and chronic pain. This response involves the innate immune system. ⋯ Analgesic drugs and anaesthetic agents have varied effects on the neuroimmune interface. Evidence of a neuroimmune interaction is mainly from animal studies. Human studies are required to evaluate the clinical implications of this neuroimmune interaction.
-
Microbiota-defined as a collection of microbial organisms colonising different parts of the human body-is now recognised as a pivotal element of human health, and explains a large part of the variance in the phenotypic expression of many diseases. A reduction in microbiota diversity, and replacement of normal microbes with non-commensal, pathogenic or more virulent microbes in the gastrointestinal tract-also known as gut dysbiosis-is now considered to play a causal role in the pathogenesis of many acute and chronic diseases. Results from animal and human studies suggest that dysbiosis is linked to cardiovascular and metabolic disease through changes to microbiota-derived metabolites, including trimethylamine-N-oxide and short-chain fatty acids. ⋯ These pathological changes in microbiota may contribute to important clinical outcomes, including surgical infection, bowel anastomotic leaks, acute kidney injury, respiratory failure and brain injury. As a strategy to reduce dysbiosis, the use of probiotics (live bacterial cultures that confer health benefits) or synbiotics (probiotic in combination with food that encourages the growth of gut commensal bacteria) in surgical and critically ill patients has been increasingly reported to confer important clinical benefits, including a reduction in ventilator-associated pneumonia, bacteraemia and length of hospital stay, in small randomised controlled trials. However, the best strategy to modulate dysbiosis or counteract its potential harms remains uncertain and requires investigation by a well-designed, adequately powered, randomised controlled trial.