Pediatric pulmonology
-
Pediatric pulmonology · Mar 2006
Comparative StudyAssociation of common haplotypes of surfactant protein A1 and A2 (SFTPA1 and SFTPA2) genes with severity of lung disease in cystic fibrosis.
Most individual cystic fibrosis transmembrane conductance regulator (CFTR) mutations appear not to correlate directly with severity of lung damage in cystic fibrosis (CF). Components of innate immunity, namely, mannose-binding lectin (MBL2), and surfactant protein A1 and A2 genes (SFTPA1 and SFTPA2), were shown to be critical in pulmonary host defenses. A pilot association study was conducted to identify genetic modifiers of lung disease in adult patients with CF. ⋯ Lower FEV1 and DLCO values were associated with MBL2 coding variants in those who had the DeltaF508 CFTR mutation (P = 0.03 and 0.004, respectively). These results support the current hypothesis that variants in pulmonary host defense molecules are potentially genetic modifiers of pulmonary disease in CF. Further work in larger populations is required to provide important new insights into the pathogenesis of CF.
-
Pediatric pulmonology · Mar 2006
Review Comparative StudyLung function tests in neonates and infants with chronic lung disease: forced expiratory maneuvers.
This fourth paper in a review series on the role of lung function testing in infants and young children with acute neonatal disorders and chronic lung disease of infancy (CLDI) addresses measurements of forced expiration using rapid thoraco-abdominal compression (RTC) techniques and the forced deflation technique. Following orientation of the reader to the subject area, we focus our comments on the areas of inquiry proposed in the introductory paper to this series. The quality of the published literature is reviewed critically, and recommendations are provided to guide future investigation in this field. ⋯ Recent studies suggested that the raised volume RTC technique, which assesses lung function over an extended volume range as in older children, may be a more sensitive means of discriminating changes in airway function in infants with respiratory disease. The forced deflation technique allows investigation of pulmonary function during the early development of CLDI in intubated subjects, but its invasive nature precludes its use in the routine setting. For all techniques, there is an urgent need to establish suitable reference data and evaluate within- and between-occasion repeatability, prior to establishing the clinical usefulness of these techniques in assessing baseline airway function and/or response to interventions in subjects with CLDI.