Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
-
J. Bone Miner. Res. · Jun 2014
Randomized Controlled TrialPamidronate attenuates muscle loss after pediatric burn injury.
Children who are burned >40% total body surface area lose significant quantities of both bone and muscle mass because of acute bone resorption, inflammation, and endogenous glucocorticoid production, which result in negative nitrogen balance. Because administration of the bisphosphonate pamidronate within 10 days of the burn injury completely prevents the bone loss, we asked whether muscle protein balance was altered by the preservation of bone. We reviewed the results from 17 burned pediatric subjects previously enrolled in a double-blind randomized controlled study of pamidronate in the prevention of post-burn bone loss and who were concurrently evaluated for muscle protein synthesis and breakdown by stable isotope infusion studies during the acute hospitalization. ⋯ Muscle fiber diameter was significantly greater in the pamidronate subjects and leg strength at 9 months post-burn was not different between subjects who received pamidronate and normal physically fit age-matched children studied in our lab. Leg strength in burned subjects who served as controls tended to be weaker, although not significantly so. If substantiated by a larger study, these results suggest that bone may have a paracrine mechanism to preserve muscle and this finding may have implications for the treatment of sarcopenia in the elderly.
-
J. Bone Miner. Res. · Jun 2014
Bisphosphonates inhibit osteosarcoma-mediated osteolysis via attenuation of tumor expression of MCP-1 and RANKL.
Osteosarcoma is the most common primary malignant tumor of bone and accounts for around 50% of all primary skeletal malignancies. In addition to novel chemotherapies, there is a need for adjuvant therapies designed to inhibit osteosarcoma proliferation and tumor-induced osteolysis to attenuate tumor expansion and metastasis. As such, studies on the efficacy of bisphosphonates on human osteosarcoma are planned after feasibility studies determined that the bisphosphonate zoledronic acid (ZOL) can be safely combined with conventional chemotherapy. ⋯ In vivo, these findings also correlated with significant reduction in osteosarcoma growth. ZOL attenuates tumor-induced osteolysis, not only through direct inhibition of osteoclasts, but also through direct actions on tumor expression of osteoclast activators. These data provide insight regarding the effect of ZOL on osteosarcoma essential for designing the planned upcoming prospective randomized trials to determine the efficacy of bisphosphonates on osteosarcoma in humans.