Leukemia
-
Multiparameter immunophenotypic analysis of neoplastic cells has proven to be of great help for the investigation of minimal residual disease in acute leukemias; however, its utility has not been systematically explored in B cell chronic lymphoproliferative disorders. The aim of the present study was to investigate the incidence of phenotypic aberrations in a series of 467 consecutive leukemic B cell chronic lymphoproliferative disorders through the comparison of the phenotypic characteristics of tumor vs normal peripheral blood (n = 10) and bone marrow (n = 10) B cells, in order to explore the applicability of this strategy for minimal residual disease monitoring. An additional goal of our study was to evaluate the sensitivity of multiparameter flow cytometry for the detection of minimal residual disease in leukemic B cell chronic lymphoproliferative disorders through dilutional experiments (n = 19). ⋯ These include CD22/CD23/CD19/CD5 and sIg(kappa)/sIg(lambda)/CD19/CD5 for lymphocytic leukemia/small lymphocytic lymphoma and prolymphocytic leukemia, CD103/CD25 or CD22/CD19/CD11c for hairy cell leukemia, FMC7/CD22/CD19/CD103 and sIg(kappa)/sIg(lambda)/CD22/CD19 for splenic marginal zone lymphomas, CD22/CD23/CD19/CD10 for follicular lymphomas and CD10/CD22/CD19/CD5 for mantle cell lymphomas. Serial dilutional experiments showed that the sensitivity level of immunophenotyping ranges between 10(-4) and 10(-5). In summary, the present study shows that immunophenotypic analysis allows the identification of aberrant phenotypes in 98% of leukemic B cell chronic lymphoproliferative disorders and these phenotypes can be used for minimal residual disease monitoring with a sensitivity limit of 10(-4)-10(-5).