Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
-
Nephrol. Dial. Transplant. · May 2017
ReviewRole of biomechanical forces in hyperfiltration-mediated glomerular injury in congenital anomalies of the kidney and urinary tract.
Congenital anomalies of the kidney and urinary tract (CAKUT) including solitary kidney constitute the main cause of progressive chronic kidney disease (CKD) in children. Children born with CAKUT develop signs of CKD only during adolescence and do not respond to renin-angiotensin-aldosterone system blockers. Early cellular changes underlying CKD progression to end-stage renal disease by early adulthood are not well understood. ⋯ Podocytes (i) are mechanosensitive to tensile and shear forces, (ii) use prostaglandin E2, angiotensin-II or nitric oxide for mechanoperception and (iii) use specific signaling pathways for mechanotransduction. We discuss (i) the nature of and differences in cellular responses to biomechanical forces, (ii) methods to study biomechanical forces and (iii) effects of biomechanical forces on podocytes and glomeruli. Future studies on FFSS will likely identify novel targets for strategies for early intervention to complement and strengthen the current regimen for treating children with CAKUT.