Toxicology
-
Lung mechanics, hemodynamics and blood chemistries were assessed in sheep (Ovis aries) before, and up to 24 h following, a 15-20 min exposure to either air (control) or approximately 500 ppm nitrogen dioxide (NO2). Histopathologic examinations of lung tissues were performed 24 h after exposure. Nose-only and lung-only routes of exposure were compared for effects on NO2 pathogenesis. ⋯ The qualitative responses of this large animal species to high-level NO2 supports the concept of size dependent species sensitivity to NO2. In addition, when inspired minute ventilation was used as a dose-determinant, a linear relationship between NO2 dose and lung resistance was found. The importance of these findings, NO2 dose-determinants, and the utility of sheep as a large animal inhalation model are discussed.
-
Human inhalation exposures to relatively high mass concentrations of the oxidant gas nitrogen dioxide (NO2) can result in a variety of pulmonary disorders, including life-threatening pulmonary edema, pneumonia, and bronchiolitis obliterans. Inasmuch as most experimental studies to date have examined NO2-induced lung injury following exposures to near ambient or supra-ambient concentrations of NO2, e.g., < or = 50 ppm, little detailed information about the pulmonary injurious responses following the acute inhalation of higher NO2 concentrations that are more commensurate with some actual human exposure conditions is currently available. Described in this report are the results from a series of investigations in which various aspects of the inhalation toxicity of high concentrations of NO2 have been examined in laboratory rats. ⋯ Comparisons of results obtained from this and the first component studies additionally revealed that brief exposures to the very high concentrations of NO2 are more hazardous than longer duration exposures to lower concentrations. In a third study series, we examined pre-exposure, exposure, and post-exposure modifiers of NO2-induced lung injury, including dietary taurine, minute ventilation, and post-exposure exercise. Results from these studies indicated: (i) dietary taurine does not protect the rat lung against high concentration NO2 exposure, (ii) the severity of acute lung injury in response to NO2 inhalation is increased by an increase in minute ventilation during exposure, and (iii) the performance of exercise after NO2 exposure can significantly enhance the injurious response to NO2.(ABSTRACT TRUNCATED AT 400 WORDS)