Toxicology
-
Under the auspices of the Organization for Economic Cooperation and Development (OECD) the Hershberger assay is being validated as an in vivo screen for compounds with (anti)androgenic potential. We participated in the final activity, the testing of coded chemicals. Test compounds included trenbolone (TREN; 1.5, 40 mg/kg), testosterone propionate (TP; 0.4 mg/kg), flutamide (FLUT; 3mg/kg), linuron (LIN; 10, 100mg/kg), 1,1-bis-(4-chlorophenyl)-2,2-dichloroethylene (p,p'-DDE; 16, 160 mg/kg), and two negative reference substances, i.e., compounds not considered to affect androgen-sensitive tissue weights (ASTWs) in the Hershberger assay, namely 4-nonylphenol (NP; 160 mg/kg) and 2,4-dinitrophenol (DNP; 10mg/kg); TREN, LIN, p,p'-DDE, NP, and DNP being used under code. ⋯ Our study accurately reproduced ASTW changes obtained in previous studies also under code suggesting that the Hershberger assay is a robust tool to screen for an (anti)androgenic potential. Assessment of ODC1 and PBPC3 gene expression in prostate, however, may only represent a sensitive tool for the detection of an androgenic potential. Finally, p,p'-DDE may affect ASTWs by several mechanisms including enhanced testosterone metabolism.
-
We have previously shown that intratracheal instillation of carbon nanoparticles exacerbates lung inflammation related to bacterial endotoxin (lipopolysaccharide, LPS) and subsequent systemic inflammation with coagulatory disturbance in mice [Inoue, K., Takano, H., Yanagisawa, R., Hirano, S., Sakurai, M., Shimada, A., Yoshikawa, T., 2006b. Effects of airway exposure to nanoparticles on lung inflammation induced by bacterial endotoxin in mice. Environ. ⋯ Nanoparticle inhalation did not significantly increase lung expression of proinflammatory cytokines or facilitate systemic inflammation and coagulatory disturbance. Isolated alveolar macrophages (AMs) from nanoparticle-exposed mice showed greater production of interleukin-1beta and keratinocyte chemoattractant stimulated with ex vivo LPS challenge than those from clean air-exposed mice, although the differences did not reach statistical significance. These results suggest that acute exposure to diesel nanoparticles exacerbates lung inflammation induced by LPS.