Nutrition
-
Review
Nutritional interventions related to bone turnover in European space missions and simulation models.
Low energy intake, low calcium intake, low plasma 25-hydroxy-vitamin D or low calcitriol levels, and high salt intake might support the development of space osteoporosis. Therefore, my colleagues and I monitored the daily energy and calcium intakes in eight astronauts during their respective space missions (Spacelab D2, Euromir 94, Euromir 95). In most of these astronauts, energy intake was reduced by more than 20% compared with their calculated energy expenditure. ⋯ In the 179-d Euromir 95 mission, investigators administered 10 mg of vitamin K from inflight day 86 to day 136 in one astronaut. During and after supplementation, bone formation markers increased significantly during this part of the mission. Therefore, vitamin K seems to play a significant role in bone turnover during space flight.
-
Circadian clocks have evolved to predict and coordinate physiologic processes with the rhythmic environment on Earth. Space studies in non-human primates and humans have suggested that this clock persists in its rhythmicity in space but that its function is altered significantly in long-term space flight. ⋯ The site of this suboscillator (or oscillators) is not known, but new evidence has suggested that peripheral tissues in the liver and viscera may express circadian clock function when forced to do so by restricted feeding schedules or other homeostatic disruptions. New research on the role of the circadian clock in the control of feeding on Earth and in space is warranted.