Nutrition
-
The physiological regulation of total body water and fluid concentrations is complex and dynamic. The human daily water requirement varies because of differences in body size, dietary solute load, exercise, and activities. Although chronically concentrated urine increases the risk of renal diseases, an empirical method to determine inadequate daily water consumption has not been described for any demographic group; instead, statistical analyses are applied to estimate nutritional guidelines (i.e., adequate intake). This investigation describes a novel empirical method to determine the 24-h total fluid intake (TFI; TFI = water + beverages + moisture in food) and 24-h urine volume, which correspond to inadequate 24-h water intake (defined as urine osmolality of 800 mOsm/kg; U800). ⋯ The U800 method could be employed to empirically determine 24-h TFI and 24-h urine volumes that correspond to inadequate water intake in diverse demographic groups, residents of specific geographic regions, and individuals who consume specialized diets or experience large daily water turnover. Because laboratory expertise and instrumentation are required, this technique provides greatest value in research and clinical settings.
-
We investigated whether or not the UCP1 -3826 A>G polymorphism is associated with obesity and related metabolic disorders in grade III obese patients. ⋯ UCP1 -3826 A>G polymorphism is associated with weight, body fat mass, and risk of type 2 diabetes mellitus in obese individuals candidates for bariatric surgery.
-
Based on previous evidence showing that early weaning disturbs the ontogenesis of rat gastric glands, which are the major site of ghrelin synthesis, we investigated the distribution of ghrelin and its receptor (GHS-R) in the rat gastric epithelium during postnatal development and evaluated the effects of early weaning on their levels. Additionally, we studied the contribution of ghrelin to gastric growth during the abrupt nutrient transition. ⋯ The present study demonstrated that ghrelin and GHS-R are distributed in gastric mucosa during the postnatal development, indicating that they can signal and function in epithelial cells. We concluded that early weaning increased ghrelin levels in the stomach, and it takes part of cell proliferation control that is essential for stomach growth. Therefore, among the many effects previously described for early weaning, this abrupt nutrient transition also changed ghrelin levels, which might represent an additional element in the complex mechanism that coordinates stomach development.