Nutrition
-
Oncology may be the most rapidly expanding field in medicine, with several innovative diagnostic and therapeutic procedures appearing daily. Advances in oncology have improved the survival rate for patients with cancer and promoting quality of life is now one of the goals in the care of these patients. Patients face a variety of disease- and treatment-related side effects, including anorexia, nausea, vomiting, recurring infections, and sleep difficulties. ⋯ Alterations in the tryptophan kynurenine pathway have been shown to impair cognitive skills in several mental illnesses. However, its possible function in CRCI has yet to be investigated. The aim of this was to examine the possible interactions between tryptophan catabolism and CRCI.
-
An increasing population in many countries consume diets high in fat and refined sugars (often in carbonated soda). Although high-fat diets have been extensively studied, less attention has been paid to carbonated soda. The aim of this study was to investigate the combined effects of a high-fat diet and soda consumption on oxidative stress and inflammation in Wistar rats. ⋯ The results from this study demonstrated that a HFD in combination with soda increased the effects of oxidative stress and inflammation in Wistar rats.
-
Non-alcoholic fatty liver disease (NAFLD) is one of the major causes of liver disease worldwide. Although various molecular mechanisms are effective in the initiation and progression, the exact pathway is not completely clarified. Recent findings suggest a role of the endocannabinoid system in the pathology of NAFLD. Inulin has been shown to be beneficial for NAFLD. With the first study, we investigated the effects of inulin supplementation on NAFLD via the endocannabinoid system in Wistar rats fed high-fat diet. ⋯ Inulin prevented the development of NAFLD, possibly by affecting the expression of genes involved in the pathogenesis of NAFLD in the liver via endocannabinoids. The results of this study show that inulin may be a promising molecule in the treatment/prevention of NAFLD.
-
Non-alcoholic fatty liver disease (NAFLD) has a growing epidemiologic and economic burden. It is associated with Western diet (WD) patterns, and its pathogenesis involves metabolic disorders (obesity, dyslipidemia, hyperglycemia, and diabetes) and gut dysbiosis, features that are usually neglected or not reproduced by most animal models. Thus, we established a 6-mo WD-induced NAFLD mouse model associated with metabolic disorder, investigating its main features at the gut microbiome-liver-adipose tissue axis, also evaluating the correlations of gut dysbiosis to the other disease outcomes. ⋯ This mice model gathered suitable phenotypical alterations in gut-liver-adipose tissue axis that resembled NAFLD associated with metabolic disorders in humans and may be considered for preclinical investigation.
-
Osteoporosis is increasingly prevalent, especially among postmenopausal women, both in China and worldwide. In previous work, soy-whey dual-protein (DP) intervention improved muscle status via regulation of gut microbiota. However, little information is available about the relationship between DP supplementation and osteoporosis. ⋯ Significant improvement was observed in bone mineral density, bone microstructure, and bone biomechanics with both DP and zoledronic acid (positive control) intervention. DP supplementation dramatically reduced the levels of serum osteocalcin and parathyroid hormone in ovariectomized rats. Ingestion of DP also resulted in a significant decrease in the number of bone marrow adipocytes and a marked increase in the number of osteoblasts, accompanied by elevated expression of the key regulator osteoprotegerin at both mRNA and protein levels. In the analysis of fecal metabolites and intestinal microbiota, the fat metabolism-related molecules chenodeoxycholate, 21-hydroxypregnenolone, and tetrahydrocorticosterone were markedly upregulated with DP treatment, whereas the content of fatty acids such as oleic acid were significantly downregulated. The abundance of three bacterial taxa (upregulated: Ruminococcaceae UCG_002; downregulated: anaerobic digester metagenome and Enterorhabdus) dramatically changed with DP intervention and was closely associated with fat metabolism-related metabolite content CONCLUSION: These results suggest that DP intervention could improve osteoporosis via regulation of bone marrow adipose tissue content and mesenchymal stem cell lineage differentiation. Furthermore, this effect might be mediated by the interaction between intestinal microbiota and metabolites.