The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology
-
In this article, we focus on the scientific evidence from randomised trials supporting treatment with inhaled corticosteroids (ICS) in chronic obstructive pulmonary disease (COPD), including treatment with combinations of long-acting β-agonist (LABA) bronchodilators and ICS. Our emphasis is on the methodological strengths and limitations that guide the conclusions that may be drawn. The evidence of benefit of ICS and, therefore, of the LABA/ICS combinations in COPD is limited by major methodological problems. ⋯ Currently, the most reliable predictor of response to ICS in COPD is the presence of eosinophilic inflammation in the sputum. There is an urgent need for better markers of benefit and risk that can be tested in randomised trials for use in routine specialist practice. Given the overall safety and effectiveness of long-acting bronchodilators in subjects without an asthma component to their COPD, we believe use of such agents without an associated ICS should be favoured.
-
The aim of this study was to test the hypothesis that neural respiratory drive, measured using diaphragm electromyogram (EMGdi) activity expressed as a percentage of maximum (EMGdi%max), is closely related to breathlessness in chronic obstructive pulmonary disease. We also investigated whether neuroventilatory uncoupling contributes significantly to breathlessness intensity over an awareness of levels of neural respiratory drive alone. EMGdi and ventilation were measured continuously during incremental cycle and treadmill exercise in 12 chronic obstructive pulmonary disease patients (forced expiratory volume in 1 s±sd was 38.7±14.5 % pred). ⋯ In chronic obstructive pulmonary disease the intensity of exertional breathlessness is closely related to EMGdi%max. These data suggest that breathlessness in chronic obstructive pulmonary disease can be largely explained by an awareness of levels of neural respiratory drive, rather than the degree of neuroventilatory uncoupling. EMGdi%max could provide a useful physiological biomarker for breathlessness in chronic obstructive pulmonary disease.