Journal of neurotrauma
-
Journal of neurotrauma · Mar 2009
ReviewThe use of pre-hospital mild hypothermia after resuscitation from out-of-hospital cardiac arrest.
Hypothermia has emerged as a potent neuroprotective modality following resuscitation from cardiac arrest. Although delayed hospital cooling has been demonstrated to improve outcome after cardiac arrest, in-field cooling begun immediately following the return of spontaneous circulation may be more beneficial. ⋯ Rapid infusion of intravenous fluid at 4 degrees C, the use of a cooling helmet, and cooling plates have all been proposed as methods for field cooling, and are all in various stages of clinical and animal testing. Whether field cooling will improve survival and neurologic outcome remains an important unanswered clinical question.
-
Therapeutic moderate hypothermia has been advocated for use in traumatic brain injury, stroke, cardiac arrest-induced encephalopathy, neonatal hypoxic-ischemic encephalopathy, hepatic encephalopathy, and spinal cord injury, and as an adjunct to aneurysm surgery. In this review, we address the trials that have been performed for each of these indications, and review the strength of the evidence to support treatment with mild/moderate hypothermia. ⋯ For traumatic brain injury, a recent meta-analysis suggests that cooling may increase the likelihood of a good outcome, but does not change mortality rates. For many of the other indications, such as stroke and spinal cord injury, trials are ongoing, but the data are insufficient to recommend routine use of hypothermia at this time.
-
Journal of neurotrauma · Mar 2009
ReviewHospital-based use of therapeutic hypothermia after cardiac arrest in adults.
Improving survival and brain function after initial resuscitation from cardiac arrest remains a critical challenge with few therapeutic options. The publication of several randomized controlled trials supporting the use of therapeutic hypothermia in cardiac arrest survivors has provided a remarkable opportunity to reduce mortality and neurologic disability from this leading cause of death. ⋯ This review will focus on the hospital-based application of therapeutic hypothermia in adult cardiac arrest survivors, with special attention to practical aspects of cooling, protocol development, and evaluation of recent data from "real world" experiences using hypothermia as a treatment option. Finally, remaining research questions and directions for future improvements in therapy will be discussed.
-
Journal of neurotrauma · Mar 2009
ReviewPosthypothermic rewarming considerations following traumatic brain injury.
To date, considerable attention has been focused upon the use of hypothermia as a therapeutic strategy for attenuating many of the damaging consequences of traumatic brain injury (TBI). Despite the promise of hypothermic intervention following TBI, many questions remain regarding the optimal use of hypothermic intervention, including, but not limited to, the rewarming rates needed to assure optimal brain protection. In this review, we revisit the relatively limited literature examining the issue of hypothermia and differing rewarming rates following TBI. ⋯ In contrast, hypothermia followed by rapid rewarming not only reverses the protective effects associated with hypothermic intervention, but in many cases, exacerbates the traumatically induced pathology and its functional consequences. While similar evaluations have not been conducted in the clinical setting, multiple lines of clinical evidence suggest the benefits of posttraumatic hypothermia are optimized through the use of slow rewarming, with the suggestion that such a strategy reduces the potential for rebound vasodilation, elevated intracranial pressure (ICP), and impaired neurocognitive recovery. Collectively, this review highlights not only the benefits of hypothermic intervention, but also the rate of posthypothermic rewarming as an important variable in assuring maximal efficacy following the use of hypothermic intervention.
-
In this article, the role of hypothermia and neuroprotection for neonatal encephalopathy will be discussed. The incidence of encephalopathy due to hypoxia ischemia as well as the pathophysiology will be presented. ⋯ The current data from randomized control trials of hypothermia as neuroprotection for full-term infants will be presented along with the results of meta-analyses of these trials. Lastly, the status of ongoing neonatal hypothermia trials will be summarized.