Journal of neurotrauma
-
Journal of neurotrauma · Feb 2017
ReviewReview: CNS Injury and NADPH Oxidase: Oxidative Stress and Therapeutic Targets.
Injury to the central nervous system (CNS) includes both traumatic brain and spinal cord injury (TBI and SCI, respectively). These injuries, which are heterogeneous and, therefore, difficult to treat, result in long-lasting functional, cognitive, and behavioral deficits. Severity of injury is determined by multiple factors, and is largely mediated by the activity of the CNS inflammatory system, including the primary CNS immune cells, microglia. ⋯ ROS play a central role in inflammation, contributing to cytokine translation and release, microglial polarization and activation, and clearance of damaged tissue. NOX has been suggested as a potential therapeutic target in CNS trauma, as inhibition of this enzyme family modulates inflammatory cell response and ROS production. The purpose of this review is to understand how the different NOX enzymes function and what role they play in the scope of CNS trauma.
-
Journal of neurotrauma · Feb 2017
ReviewTranslational Relevance of Swine Models of Spinal Cord Injury.
Spinal cord injury (SCI) is a physically and psychologically devastating clinical condition. The typical treatment regimens of decompressive surgery and rehabilitation therapy still leave many patients with permanent disability. The development of new therapies and devices can be accelerated if relevant translational animal models are more effectively used in pre-clinical stages. ⋯ Several spine injury models have recently been developed for swine and are beginning to be used to evaluate new therapies. Swine models of SCI offer tremendous advantages for efficient translation of pre-clinical discoveries and the development of new therapies and devices. Future swine models will also be enhanced by advances in gene-editing technology to further elucidate the complex pathophysiology associated with SCI and provide a means to engineer specific spinal pathologies.