Journal of neurotrauma
-
Journal of neurotrauma · Nov 2022
Review Meta AnalysisMagnetic resonance spectroscopy of traumatic brain injury and subconcussive hits: A systematic review and meta-analysis.
Magnetic resonance spectroscopy (MRS) is a non-invasive technique used to study metabolites in the brain. MRS findings in traumatic brain injury (TBI) and subconcussive hit literature have been mixed. The most common observation is a decrease in N-acetyl-aspartate (NAA), traditionally considered a marker of neuronal integrity. ⋯ NAA was consistently decreased in TBI of all severities, but not in subconcussive hits. Cho and mI were found to be increased in moderate-to-severe TBI but not in mild TBI. Glx and Cr were largely unaffected, but did show alterations in certain conditions.
-
Journal of neurotrauma · Nov 2022
Comparison Groups Matter in Traumatic Brain Injury Research: An Example with Dementia.
The association between traumatic brain injury (TBI) and risk for Alzheimer disease and related dementias (ADRD) has been investigated in multiple studies, yet reported effect sizes have varied widely. Large differences in comorbid and demographic characteristics between individuals with and without TBI could result in spurious associations between TBI and poor outcomes, even when control for confounding is attempted. Yet, inadvertent control for post-TBI exposures (e.g., psychological and physical trauma) could result in an underestimate of the effect of TBI. ⋯ Using data on Veterans aged ≥55 years obtained from the Veterans Health Administration (VA) for years 1999-2019, we compared risk of ADRD between Veterans with incident TBI (n = 9440) and (1) the general population of Veterans who receive care at the VA (All VA) (n = 119,003); (2) Veterans who received care at a VA emergency department (VA ED) (n = 111,342); and (3) Veterans who received care at a VA ED for non-TBI trauma (VA ED NTT) (n = 65,710). In inverse probability of treatment weighted models, TBI was associated with increased risk of ADRD compared with All VA (hazard ratio [HR] 1.94; 95% confidence interval [CI] 1.84, 2.04), VA ED (HR 1.42; 95% CI 1.35, 1.50), and VA ED NTT (HR 1.12; 95% CI 1.06, 1.18). The estimated effect of TBI on incident ADRD was strongly impacted by choice of the comparison group.
-
Journal of neurotrauma · Nov 2022
Risk factors for high symptom burden 3 months after traumatic brain injury and implications for clinical trial design: a TRACK-TBI study.
More than 75% of patients presenting to level I trauma centers in the United States with suspicion of TBI sufficient to require a clinical computed tomography scan report injury-related symptoms 3 months later. There are currently no approved treatments, and few clinical trials have evaluated possible treatments. Efficient trials will require subject inclusion and exclusion criteria that balance cost-effective recruitment with enrolling individuals with a higher chance of benefiting from the interventions. ⋯ TBI severity was not significantly associated with 3-month symptom burden (p = 0.37). Using simulated data to evaluate the effect of enrichment, we showed that including only people with high symptom burden at 2 weeks would permit trials to reduce the sample size by half, with minimal increase in screening, as compared with enrolling an unenriched sample. Clinical trials aimed at reducing symptoms after TBI can be efficiently conducted by enriching the included sample with people reporting a high early symptom burden.
-
Journal of neurotrauma · Nov 2022
Females Exhibit Better Cerebral Pressure Autoregulation, Less Mitochondrial Dysfunction, and Reduced Excitotoxicity following Severe Traumatic Brain Injury.
The aim of the study was to investigate sex-related differences in intracranial pressure (ICP) dynamics, cerebral pressure autoregulation (PRx55-15), cerebral energy metabolism, and clinical outcome after severe traumatic brain injury (TBI). One-hundred sixty-nine adult patients with TBI, treated at the Neurointensive Care (NIC) Unit at Uppsala University Hospital between 2008 and 2020 with ICP and cerebral microdialysis (MD) monitoring were included. Of the 169 patients with TBI, 131 (78%) were male and 38 (22%) female. ⋯ There was no difference in mortality or the degree of favorable outcome between the sexes. Altogether, females exhibited more favorable cerebral physiology post-TBI, particularly better mitochondrial function and reduced excitotoxicity, but this did not translate into better clinical outcome compared with males. Future studies are needed to further explore potential sex differences in secondary injury mechanisms in TBI.
-
Journal of neurotrauma · Nov 2022
Effects of isolated and combined exposure of the brain and lungs to a laser-induced shock wave(s) on physiological and neurological responses in rats.
Blast-induced traumatic brain injury (bTBI) has been suggested to be caused by direct head exposure and by torso exposure to a shock wave (thoracic hypotheses). It is unclear, however, how torso exposure affects the brain in real time. This study applied a mild-impulse laser-induced shock wave(s) (LISW[s]) only to the brain (Group 1), lungs (Group 2), or to the brain and lungs (Group 3) in rats. ⋯ Alternatively, two groups of rats with lung exposure (Group 2 and Group 3) exhibited continuously aggravated motor functions for up to seven days post-exposure, suggesting different mechanisms for motor dysfunction caused by brain exposure and that caused by lung exposure. As for the reported thoracic hypotheses, our observations seem to support the volumetric blood surge and vagovagal reflex. Overall, the results of this study indicate the importance of the torso guard to protect the brain and its function.