Journal of neurotrauma
-
Journal of neurotrauma · Sep 2024
Editorial Historical ArticleRosalind Franklin Society Proudly Announces the 2023 Award Recipient for Journal of Neurotrauma.
-
Journal of neurotrauma · Sep 2024
ReviewSpinal cord transcutaneous stimulation in cervical spinal cord injury: A review examining upper extremity neuromotor control, recovery mechanisms, and future directions.
Cervical spinal cord injury (SCI) results in significant sensorimotor impairments below the injury level, notably in the upper extremities (UEs), impacting daily activities and quality of life. Regaining UE function remains the top priority for individuals post-cervical SCI. Recent advances in understanding adaptive plasticity within the sensorimotor system have led to the development of novel non-invasive neurostimulation strategies, such as spinal cord transcutaneous stimulation (scTS), to facilitate UE motor recovery after SCI. ⋯ Further, the reported improvements translate to the recovery of various UE functional tasks and positively impact the quality of life in individuals with cervical SCI. Several methodological limitations, including stimulation site selection and parameters, training strategies, and sensitive outcome measures, require further advancements to allow successful translation of scTS from research to clinical settings. This review also summarizes the current literature and proposes future directions to support establishing approaches for scTS as a viable neuro-rehabilitative tool.
-
Journal of neurotrauma · Sep 2024
Tempol, a superoxide dismutase mimetic, inhibits Wallerian degeneration following spinal cord injury by preventing glutathione depletion and aldose reductase activation.
Spinal cord contusion injury results in Wallerian degeneration of spinal cord axonal tracts, which are necessary for locomotor function. Axonal swelling and loss of axonal density at the contusion site, characteristic of Wallerian degeneration, commence within hours of injury. Tempol, a superoxide dismutase mimetic, was previously shown to reduce the loss of spinal cord white matter and improve locomotor function in an experimental model of spinal cord contusion, suggesting that tempol treatment might inhibit Wallerian degeneration of spinal cord axons. ⋯ Together, these results support a pathological role for polyol pathway activation in glutathione depletion, resulting in Wallerian degeneration after spinal cord injury (SCI). Interestingly, methylprednisolone, oxandrolone, and clenbuterol, which are known to spare axonal tracts after SCI, were equally effective in inhibiting polyol pathway activation. These results suggest that prevention of AR activation is a common target of many disparate post-SCI interventions.
-
Journal of neurotrauma · Sep 2024
Multicenter Study Observational StudyExtent of traumatic spinal cord injury is lesion level dependent and predictive of recovery: a multicenter neuroimaging study.
Assessing the extent of the intramedullary lesion after spinal cord injury (SCI) might help to improve prognostication. However, because the neurological level of injury impacts the recovery potential of SCI patients, the question arises whether lesion size parameters and predictive models based on those parameters are affected as well. In this retrospective observational study, the extent of the intramedullary lesion between individuals who sustained cervical and thoracolumbar SCI was compared, and its relation to clinical recovery was assessed. ⋯ The two times greater lesion length in thoracolumbar compared with cervical SCI might be related to differences in the anatomy, biomechanics, and perfusion between the cervical and thoracic spines. Preserved tissue bridges were less influenced by the lesion level while closely related to the clinical impairment. These results highlight the robustness and utility of tissue bridges as a neuroimaging biomarker for predicting the clinical outcome after SCI in heterogeneous patient populations and for patient stratification in clinical trials.
-
Journal of neurotrauma · Sep 2024
ReviewEfficacy of interventions to improve cognitive function in adults with spinal cord injury: A Systematic Review.
Cognitive impairment is a common complication following spinal cord injury (SCI) and imposes a significant negative impact on adjustment, functional independence, physical and mental health, and quality of life. It is unclear whether interventions for cognitive impairment following SCI are effective. A systematic review of controlled trials was performed to evaluate the effect of interventions on cognitive functions in adults with SCI using search engines: Embase, The Cochrane Library, MEDLINE, Scopus, CINAHL, and Web of Science up to December 2023. ⋯ The current review highlights the scarcity of research investigating the effectiveness of interventions that target cognitive function after SCI. Further, the effects of these eight studies are uncertain due to concerns about the quality of designs and small sample sizes utilized in the trials, as well as the employment of insensitive neurocognitive tests when applied to adults with SCI. This review highlights a significant gap in knowledge related to SCI cognitive rehabilitation.