Journal of neurotrauma
-
Journal of neurotrauma · Jul 2024
Posttraumatic Transient Neurologic Dysfunction: A Proposal for Pathophysiology.
Unexplained neurological deterioration is occasionally observed in patients with traumatic brain injuries (TBIs). We aimed to describe the clinical features of post-traumatic transient neurological dysfunction and provide new insight into its pathophysiology. We retrospectively collected data from patients with focal neurological deterioration of unknown origin during hospitalization for acute TBI for 48 consecutive months. ⋯ Transient neurological dysfunction (TND) can occur during the acute phase of TBI. Although TND may last longer than a typical transient ischemic attack or seizure, it eventually resolves regardless of treatment. Based on our observation, we postulate that this is a manifestation of spreading depolarization occurring in the injured brain, which is analogous to migraine aura.
-
Journal of neurotrauma · Jul 2024
Widespread white matter abnormalities in concussed athletes detected by 7T diffusion MRI.
Sports-related concussions may cause white matter injuries and persistent post-concussive symptoms (PPCS). We hypothesized that athletes with PPCS would have neurocognitive impairments and white matter abnormalities that could be revealed by advanced neuroimaging using ultra-high field strength diffusion tensor (DTI) and diffusion kurtosis (DKI) imaging metrics and cerebrospinal fluid (CSF) biomarkers. A cohort of athletes with PPCS severity limiting the ability to work/study and participate in sport school and/or social activities for ≥6 months completed 7T magnetic resonance imaging (MRI) (morphological T1-weighed volumetry, DTI and DKI), extensive neuropsychological testing, symptom rating, and CSF biomarker sampling. ⋯ In this first 7T DTI and DKI study investigating PPCS, widespread microstructural alterations were observed in the white matter, correlating with CSF markers of axonal injury. More white matter changes were observed using DKI than using DTI. These white matter alterations may indicate persistent pathophysiological processes following concussion in sport.
-
Journal of neurotrauma · Jul 2024
Multicenter StudyParallel CSF and serum temporal profile assessment of axonal injury biomarkers NF-L and pNF-H: Associations with patient outcome in moderate-severe traumatic brain injury.
Neurofilament-light chain (NF-L) and phosphorylated neurofilament-heavy chain (pNF-H) are axonal proteins that have been reported as potential diagnostic and prognostic biomarkers in traumatic brain injury (TBI). However, detailed temporal profiles for these proteins in blood, and interrelationships in the acute and chronic time periods post-TBI have not been established. Our objectives were: 1) to characterize acute-to-chronic serum NF-L and pNF-H profiles after moderate-severe TBI, as well as acute cerebrospinal fluid (CSF) levels; 2) to evaluate CSF and serum NF-L and pNF-H associations with each other; and 3) to assess biomarker associations with global patient outcome using both the Glasgow Outcome Scale-Extended (GOS-E) and Disability Rating Scale (DRS). ⋯ This study shows for the first time that serum levels of NF-L and pNF-H peak at D20-30 post-TBI. Serum NF-L levels, and to a lesser extent pNF-H levels, are robustly associated with global patient outcomes and disability after moderate-severe TBI. Further studies on clinical utility as prognosis and treatment-response indicators are needed.
-
Journal of neurotrauma · Jul 2024
ReviewTranscranial Doppler ultrasound and concussion: Supplemental symptoms with physiology - A systematic review.
Sport-related concussion (SRC) can impair the cerebrovasculature both acutely and chronically. Transcranial Doppler (TCD) ultrasound assessment has the potential to illuminate the mechanisms of impairment and provide an objective evaluation of SRC. The current systematic review investigated studies employing TCD ultrasound assessment of intracranial arteries across three broad categories of cerebrovascular regulation: neurovascular coupling (NVC), cerebrovascular reactivity (CVR), and dynamic cerebral autoregulation (dCA). ⋯ There was evidence that clinical symptom resolution occurred before cerebrovascular function, indicating that physiological deficits may persist despite clinical recovery and return to play. Collectively, this emphasizes an opportunity for the use of TCD to illuminate the cerebrovascular deficits caused by SRC. It also highlights that there is need for consistent methodological rigor when employing TCD in a SRC population.